Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Σελίδα:  1  2  3  (Επόμενο)
  ΟΛΑ

Α

Ακέραια αλγεβρική παράσταση

Μια αλγεβρική παράσταση λέγεται ακέραια, όταν μεταξύ των μεταβλητών της

  • σημειώνονται μόνο οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και
  • οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί.

Για παράδειγμα η παράσταση $$\sqrt 2 {x^2} - \frac{2}{3}x$$ είναι ακέραια  ενώ η  $$2\sqrt x  + 5x$$ δεν είναι.


Ακέραιοι αριθμοί

Ακέραιοι αρθμοίΑκέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς.

Οι Φυσικοί αριθμοί περιέχονται στους ακεραίους αριθμούς


Αλγεβρική παράσταση

Μια παράσταση που περιέχει πράξεις με αριθμούς και μεταβλητές ονομάζεται αλγεβρική παράσταση.
Για παράδειγμα, η παράσταση 2·x- 5·x+5 είναι μια αλγεβρική παράσταση.

Όταν γράφουμε αλγεβρικές παραστάσεις, συνήθως δε βάζουμε το σύμβολο (·) του πολλαπλασιασμού μεταξύ των αριθμών και των μεταβλητών ή μεταξύ των μεταβλητών. Έτσι η προηγούμενη παράσταση γράφεται 2x- 5x+5.

Oι προσθετέοι  2x & 5x & 5  λέγονται όροι αυτής.

Απλοποιούμε τη μορφή των παραστάσεων κάνοντας Αναγωγή ομοίων όρων


Αναγωγή ομοίων όρων

Η διαδικασία αυτή με την οποία γράφουμε σε απλούστερη μορφή αλγεβρικές παραστάσεις, ονομάζεται «αναγωγή ομοίων όρων». Βασίζεται στην Eπιμεριστική ιδιότητα.

7 · α + 8 · α = (7 + 8) · α = 15 · α
x + 4 · x – 2 · x = (1 + 4 – 2) · x = 3 · x
5 · t – 6 · t – 8 · t = (5 – 6 – 8) · t = –9 · t


Ανισότητα

Σύγκριση

Για να συγκρίνουμε λοιπόν δύο πραγματικούς αριθμούς α και β, που δεν έχουν παρασταθεί με σημεία ενός άξονα, βρίσκουμε τη διαφορά τους α - β και εξετάζουμε αν είναι θετική ή αρνητική ή μηδέν.

Αν α - β > 0 τότε α > β
Αν α - β < 0 τότε α< β
Αν α - β = 0 τότε α = β

Διάταξη

Διάταξη-Άξονας

Δύο ή περισσότεροι πραγματικοί αριθμοί που έχουν παρασταθεί με σημεία ενός άξονα είναι διατεταγμένοι. Άρα:

Κάθε θετικός αριθμός είναι μεγαλύτερος από το μηδέν.
Κάθε αρνητικός αριθμός είναι μικρότερος από το μηδέν.
Κάθε θετικός αριθμός είναι μεγαλύτερος από κάθε αρνητικό αριθμό.

Ιδιότητες ανισότητας- διάταξης


Αν α > β τότε α + γ > β + γ και α - γ > β - γ.  Αν και στα δύο μέλη μιας ανισότητας προσθέσουμε ή αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ > 0 τότε α γ > β γ και $$ \frac{ \alpha }{ \gamma } > \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο θετικό αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ < 0 τότε α γ < β γ και $$ \frac{ \alpha }{ \gamma } < \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο αρνητικό αριθμό, τότε προκύπτει ανισότητα αντίθετης φοράς

Αν α > β και γ > δ τότε α + γ > β + δ. Αν προσθέσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά, τότε προκύπτει ανισότητα με την ίδια φορά..

Αν α, β, γ, δ θετικοί αριθμοί με α > β και γ > δ τότε αγ > βδ.  Αν πολλαπλασιάσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά και θετικά μέλη, τότε προκύπτει ανισότητα με την ίδια φορά.

α2 ≥ 0. Το τετράγωνο κάθε πραγματικού αριθμού α είναι μη αρνητικός αριθμός. Αν για τους πραγματικούς αριθμούς α, β ισχύει α2 + β2 = 0, τότε α = 0 και β = 0.

Αν α > β και β > γ τότε α > γ. Μεταβατική ιδιότητα.

Δείτε παράδειγμα ασκήσεων με ανισώσεις ... εδώ.

 


Απόλυτη τιμή

απόλυτη τιμήΗ απόλυτη τιμή ενός ρητού αριθμού α εκφράζει την απόσταση του σημείου μετετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με |α|.

Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι και έχουν την ίδια απόλυτη τιμή.

Ο αντίθετος του x είναι ο -x.

απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός|+6| = 6.

απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. |-6| = -(6-)=6

H απόλυτη τιμή του μηδενός είναι το μηδέν.


Αριθμητική παράσταση

ονομάζεται μια παράσταση που περιέχει πράξεις με αριθμούς..
Για παράδειγμα, η παράσταση  2·3-4·(-3)+5 είναι μια αριθμητική παράσταση. 


Αρνητικοί αριθμοί

Οι αρνητικοί αριθμοί με πρόσημο - , είναι οι συμμετρικοί των θετικών αριθμών, με πρόσημο + (το οποίο παραλείπεται όταν δε δημιουργείται ασάφεια. 

  • Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός
  • Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. +5 , +1,25 , +$$ \frac{5}{7} $$ ή -5 , -1,25 , -$$ \frac{5}{7} $$
  • Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. -5 , +7,2 
Παράσταση των ρητών αριθμών με σημεία μιας ευθείας

 Αν θεωρήσουμε αριστερά της αρχής Ο του ημιάξονα Οx των αριθμών, τον αντικείμενο αυτού ημιάξονα Οx', θα έχουμε τη δυνατότητα, με αυτόν τον τρόπο, να παραστήσουμε όλους τους ρητούς αριθμούς.

άξονας αριθμών

Το σημείο Α έχει τετμημένη 4 και το σημείο Β έχει τετμημένη -2.

Απόλυτη τιμή

Πράξεις με αρνητικούς αριθμούς
Πρόσθεση
  • Αν οι αριθμοί είναι ομόσημοι, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμα βάζουμε το κοινό τους πρόσημο: +2+3=+(2+3)=+5 , -2-3=-(2+3)=-5
  • Αν οι αριθμοί είναι ετερόσημοι, αφαιρούμε τη μικρότερη απόλυτη τιμή από τη μεγαλύτερη και στη διαφορά βάζουμε το πρόσημο της μεγαλύτερη απόλυτης τιμής: -2+3=+(3-2) =+1 , +2-3=-(3-2)=-1
Αφαίρεση
  • Στον μειωτέο α, πρσθέτουμα τον αντίθετο του αφαιρετέου. α-β=α+(-β):  2-(-3)=2+(+3)=+5 , 2-(+3)=2+(-3)=-1
Πολλαπλασιασμός 
  • Αν οι αριθμοί είναι ομόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε θετικό πρόσημο: (+2)·(+3)=+6 , (-2)·(-3)=+6
  • Αν οι αριθμοί είναι ετερόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε αρνητικό πρόσημο: (+2)·(-3)=-6 , (-2)·(+3)=-6
Διαίρεση
  • Πολλαπλασιάζουμε τον διαιρετέο α με τον αντίστροφο $$ \frac{1}{ \beta } $$ του διαιρέτη β. α:β= $$ \alpha \cdot \frac{1}{ \beta } $$, με β≠0. 
  • Για τα πρόσημα ισχύει ο κανόνας του πολλαπλασιασμού.
  • (+3): (-$$ \frac{3}{5} $$) = (+3)·(-$$ \frac{5}{3} $$) =-5

Ά

Άρρητοι αριθμοί

άρρητοι αριθμοίΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

  • Οι άρρητοι αριθμοί δεν μπορούν να γραφούν στη μοεφή $$ \frac{ \mu }{ \nu } $$ με ν ≠ 0.
  • Η δεκαδική φραφή του άρρητου αριθμού έχει άπειρα ψηφία, χωρίς να εμφανίζεται επαναλαμβανόμενο μοτίβο.
  • η τετραγωνική ρίζα κάθε ακέραιου που δεν είναι τετράγωνο, είναι άρρητος.
  • Υπάρχουν και άλλοι άρρητοι που δεν είναι ρίζες ρητών αριθμών, όπως ο γνωστός από τη μέτρηση του κύκλου αριθμός π.

Δ

Διάνυσμα

Ορισμοί

διανύσματα ορισμοίΤα διανυσματικά μεγέθη παριστάνονται με διανύσματα που συμβολίζονται με βέλη έχοντας ένα σημείο Α που είναι η αρχή και λέγεται σημείο εφαρμογής του διανύσματος και ένα σημείο Β που είναι το πέρας (τέλος) του διανύσματος. Το διάνυσμα, τότε, συμβολίζεται με $$\overrightarrow {{\rm A}{\rm B}} $$

Ένα διάνυσμα έχει τα εξής στοιχεία:

  • Διεύθυνση, την ευθεία ε που ορίζουν τα άκρα Α, Β ή οποιαδήποτε άλλη ευθεία παράλληλη προς αυτή.
  • Φορά, που καθορίζεται από το αν το διάνυσμα έχει αρχή το Α και πέρας το Β $$\overrightarrow {{\rm A}{\rm B}} $$, ή αρχή το Β και πέρας το Α $$\overrightarrow {{\rm B}{\rm A}} $$. 
  • Μέτρο, το μήκος του ευθύγραμμου τμήματος ΑΒ, το οποίο συμβολίζουμε με $$\left| {\overrightarrow {{\rm A}{\rm B}} } \right|$$. Το μέτρο είναι πάντοτε ένας αριθμός θετικός ή μηδέν.
  • Η διεύθυνση μαζί με τη φορά καθορίζουν την κατεύθυνση ενός διανύσματος.
Διανύσματα που έχουν την ίδια διεύθυνση.  Ομόρροπα - Αντίρροπα, Ίσα - Αντίθετα


ομόρροπα ίσαΟμόρροπα λέγονται τα διανύσματα που έχουν την ίδια διεύθυνση και την ίδια φορά (ἰδια κατεύθυνση)

Δύο διανύσματα λέγονται ίσα, όταν έχουν την ίδια διεύθυνση, την ίδια φορά και ίσα μέτρα.

αντίρροπα αντίθετα

 

 

Αντίρροπα λέγονται τα διανύσματα που έχουν την ίδια διεύθυνση και αντίθετη φορά (αντίθετη κατεύθυνση) 

Δύο διανύσματα είναι αντίθετα, όταν έχουν την ίδια διεύθυνση, ίσα μέτρα και αντίθετη φορά.

ΠΡΟΣΟΧΗ:  (Τα διανύσματα $$\overrightarrow {{\rm A}{\rm B}} $$ και $$\overrightarrow {{\rm B}{\rm A}} $$ είναι αντίθετα $$\overrightarrow {{\rm A}{\rm B}}  =  - \overrightarrow {{\rm B}{\rm A}} $$. Έχουν την ίδια διεύθυνση, αντίθετες  φορές και ίσα μέτρα $$\left| {\overrightarrow {{\rm A}{\rm B}} } \right| = \left| {\overrightarrow {{\rm B}{\rm A}} } \right|$$).

Πρόσθεση διανυσμάτων

Κανόνας παραλληλογράμμου

 

πρόσθεση κανόνας παραλληλογράμμουΜεταφέρουμε τα διανύσματα, έτσι ώστε να έχουν κοινή αρχή και σχηματίζουμε το παραλληλόγραμμο που έχει πλευρές τα διανύσματα. Η διαγώνιος του παραλληλογράμμου που έχει ως αρχή την κοινή τους αρχή είναι το άθροισμα των διανυσμάτων. 

 

 

Κανόνας πολυγώνου

πρόσθεση κανόνας πολυγώνουκανόνας πολυγώνουΜεταφέρουμε παράλληλα τα διανύσματα που θέλουμε να προσθέσουμε, ώστε να γίνουν όλα διαδοχικά. Το άθροισμα των  θα είναι το διάνυσμα που θα έχει αρχή την αρχή του πρώτου και πέρας το πέρας του τελευταίου.

 Στο σχήμα ισχύει ότι $$\overrightarrow \alpha   + \overrightarrow \beta   + \overrightarrow \gamma   = \overrightarrow \delta  $$.

 

Αφαίρεση διανυσμάτων

αφαίρεση διανυσμάτωνΗ διαφορά δύο διανυσμάτων $$\overrightarrow \alpha  $$ και  $$\overrightarrow \beta  $$ συμβολίζεται με $$\overrightarrow \alpha   - \overrightarrow \beta  $$ και ορίζεται ως άθροισμα του $$\overrightarrow \alpha  $$  με το αντίθετο διάνυσμα του $$\overrightarrow \beta  $$, δηλαδή με το $$ - \overrightarrow \beta  $$. Έτσι  $$\overrightarrow \alpha   - \overrightarrow \beta   = \overrightarrow \alpha   + ( - \overrightarrow \beta  )$$.

 

 

 

 
Μηδενικό διάνυσμα

Το μηδενικό διάνυσμα είναι ένα διάνυσμα του οποίου η αρχή και το τέλος (πέρας) ταυτίζονται. Το μηδενικό διάνυσμα συμβολίζεται με $$\overrightarrow 0 $$.
μηδενικό διάνυσμαΤο μηδενικό διάνυσμα είναι ένα σημείο, οπότε δεν έχει ούτε διεύθυνση ούτε φορά και το μέτρο του είναι ίσο με 0. Δηλαδή:
Το άθροισμα δύο αντίθετων διανυσμάτων είναι το μηδενικό διάνυσμα.
Το άθροισμα των διανυσμάτων του σχήματος είναι το μηδενικό διάνυσμα.

 
 
 
Κάθετα διανύσματα. Σύνθεση - Ανάλυση

 κάθεταΣύνθεση-Πρόσθεση-Άθροισμα διανυσμάτων.

Ουσιαστικά αντικαθιστούμε τα δυο διανύσματα $$\overrightarrow \alpha  $$, $$\overrightarrow \beta  $$ με ένα $$\overrightarrow \gamma  $$ ώστε $$\overrightarrow \alpha   + \overrightarrow \beta   = \overrightarrow \gamma  $$.

  • Υπολογίζουμε το μέτρο του αθροίσματος με το Πυθαγόρειο θεώρημα: $$\left| {\overrightarrow \gamma  } \right| = \sqrt {{{\left| {\overrightarrow \alpha  } \right|}^2} + {{\left| {\overrightarrow \beta  } \right|}^2}} $$.
  • Η διεύθυνση του αθροίσματος $$\overrightarrow \gamma  $$ σχηματίζει με  το διάνυσμα $$\overrightarrow \alpha  $$, π.χ., γωνία εφαπτομένης $$\varepsilon \varphi \varphi \frac{{\left| {\overrightarrow \beta  } \right|}}{{\left| {\overrightarrow \alpha  } \right|}}$$ 

Ανάλυση διανύσματος σε δυο συνιστώσες.

Αντικαθιστούμε ένα διάνυσμα $$\overrightarrow \gamma  $$  με δυο κάθετες συνιστώσες $$\overrightarrow \alpha  $$ και $$\overrightarrow \beta  $$,  που έχουν το αρχικό διάνυσμα ως άθροισμα. Χρησιμοποιούνται οι Τριγωνομετρικοί αριθμοί και προκύπτει ότι:

  • $$\left| {\overrightarrow \alpha  } \right| = \left| {\overrightarrow \gamma  } \right| \cdot \sigma \upsilon \nu \varphi $$
  • $$\left| {\overrightarrow \beta  } \right| = \left| {\overrightarrow \gamma  } \right| \cdot \eta \mu \varphi $$ 

 


Δύναμη

Δυνάμεις ρητών αριθμών με φυσικό εκθέτη

δύναμη

 

 

 

  •  Για ν = 1, γράφουμε α0 = 1
  • Για ν = 1, γράφουμε α1 = α
  • Η δύναμη αν διαβάζεται και νιοστή δύναμη του α.
  • Η δύναμη α2 λέγεται και τετράγωνο του α ή α στο τετράγωνο.
  • Η δύναμη α3 λέγεται κύβος του α ή α στον κύβο.
Πρόσημο δύναμης
  • Δύναμη με βάση θετικό αριθμό είναι θετικός αριθμός.  Αν α > 0, τότε αν > 0,  (+2)= +23
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη άρτιο είναι θετικός αριθμόςΑν α < 0 και ν άρτιος, τότε αν> 0,  (-2)= +24
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη περιττό είναι αρνητικός αριθμόςΑν α < 0 και ν περιττός, τότε αν< 0,  (-2)= -23

Δυνάμεις ρητών αριθμών με ακέραιο εκθέτη

  • Η δύναμη κάθε αριθμού, διάφορου του μηδενός, με εκθέτη αρνητικό είναι ίση με δύναμη μου έχει βάση τον αντίστροφο αριθμό  με αντίθετο εκθέτη.  

$$\left( \frac{ \alpha }{ \beta } \right)^{-\ ν}$$=$$\left( \frac{ \beta }{ \alpha } \right)^{\ ν}$$ , $$\left( \frac{ 2 }{ 3 } \right)^{-\ 5}$$=$$\left( \frac{ 3 }{ 2 } \right)^{\ 5}$$

 

Ιδιότητες δυνάμεων
  • Για να πολλαπλασιάσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη το άθροισμα των εκθετών. αμ · αν = αμ+ν

 3· 33 = 35,   32 · 3- 3 = 3- 1 = $$ \frac{1}{3} $$

  • Για να διαιρέσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη τη διαφορά του εκθέτη του διαιρέτη από τον εκθέτη του διαιρετέου. αμ : αν = αμ - ν 

3: 33 = 3-1 = $$ \frac{1}{3} $$,   32 : 3- 3 = 32 - (-3) = 35

  • Για να υψώσουμε ένα γινόμενο σε εκθέτη, υψώνουμε κάθε παράγοντα του γινομένου στον εκθέτη αυτό. (α · β)μ =  αμ · βμ

(2 · 3)=  25 · 35,  25 · 3(2 · 3)5 = 65

  • Για να υψώσουμε ένα πηλίκο σε έναν εκθέτη, υψώνουμε καθένα από τους όρους του πηλίκου στον εκθέτη αυτό. $$\left( \frac{ \alpha }{ \beta } \right)^{ \nu }$$ = $$ \frac{ \alpha ^{ \nu }}{ \beta ^{ \nu }} $$

$$ \frac{4}{25} = \frac{2^{2}}{5^{2}} =\left( \frac{2}{5} \right)^{2}$$

  • Για να υψώσουμε μία δύναμη σε έναν εκθέτη, υψώνουμε τη βάση της δύναμης στο γινόμενο των εκθετών. $$\left( \alpha ^{ \mu }\right)^{ \nu }= \alpha ^{ \mu \cdot \nu }$$

$$4^{3}=\left(2^{2}\right)^{3}=2^{6}$$


Ε

Ε.Κ.Π.

Ε.Κ.Π. ακεραίων αλγεβρικών παραστάσεων

Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) δύο ή περισσοτέρων ακέραιων αλγεβρικών παραστάσεων που έχουν αναλυθεί σε γινόμενο πρώτων παραγόντων ονομάζεται, το γινόμενο των κοινών και μη κοινών παραγόντων τους με εκθέτη καθενός το μεγαλύτερο από τους εκθέτες του.

Παράδειγμα

Ε.Κ.Π. (6(x2 - y2),  4(x2 - 2χy + y2),  12(x - y)3} = ?

Αναλύουμε τις παραστάσεις και τους συντελεστές τους σε γινόμενα πρώτων παραγόντων: 

$$6\left( {{x^2} - {y^2}} \right) = 2 \cdot 3(x - y)(x + y)$$

$$12{(x - y)^3} = {2^2} \cdot 3{(x - y)^3}$$

$$4({x^2} - 2xy + {y^2}) = {2^2}{(x - y)^2}$$

$${\rm E}.{\rm K}.\Pi .\left( {2 \cdot 3(x - y)(x + y){{,2}^2}{{(x - y)}^2},\,\,{2^2} \cdot 3{{(x - y)}^3}} \right) = {2^2} \cdot 3(x + y){(x - y)^3} = 12(x + y){(x - y)^3}$$

 


Εξίσωση

Ονομάζουμε εξίσωση την ισότητα δύο αλγεβρικών παραστάσεων που περιέχουν τουλάχιστον μια μεταβλητή που ονομάζεται άγνωστος.
π.χ. εξίσωση είναι η παράσταση 2x2+5x-3=8(x3+2)

  • Η αλγεβρική παράσταση αριστερά ή δεξιά του ίσον λέγεται μέλος της εξίσωσης.
  • Οι όροι που περιέχουν μεταβλητή λέγονται άγνωστοι όροι (2x2, 5x, x3), ενώ οι άλλοι λέγονται γνωστοί όροι.
  • Λύση ή ρίζα της εξίσωσης είναι η τιμή του αγνώστου που επαληθεύει την ισότητα.
  • Η διαδικασία αναζήτησης της λύσης της εξίσωσης θα λέγεται επίλυση της εξίσωσης.
Εξίσωση πρώτου βαθμού

Έχει τη μορφή $$\beta x + \gamma  = 0$$.

 

Αν $$\beta  \ne 0$$, τότε; η εξίσωση $$\beta x + \gamma  = 0$$ έχει μοναδική λύση την $$x =  - \frac{\gamma }{\beta }$$.
Αν $$\beta  = 0$$, τότε η εξίσωση $$\beta x + \gamma  = 0$$ γράφεται $$0x =  - \gamma $$ και

  • αν $$\gamma  \ne 0$$ δεν έχει λύση (αδύνατη) 0x=γ, ενώ 
  • αν $$\gamma  = 0$$, κάθε αριθμός είναι λύση της (ταυτότητα ή αόριστη). 0x=0 

 Δες σε παράδειγμα τον αλγόριθμο επίλυσης εξίσωσης πρώτου βαθμού ... εδώ.

Δες σε παράδειγμα τη διαδικασία επίλυσης προβλήματος με τη χρήση εξίσωσης πρώτου βαθμού ... εδώ.

 

Εξίσωση δευτέρου βαβμού

Στην εξίσωση $$\alpha {x^2} + \beta x + \gamma  = 0$$, η Διακρίνουσα $$\Delta  = \sqrt {{\beta ^2} - 4a\gamma } $$ καθορίζει τις ρίζες της εξίσωσης:

  • Αν $$\Delta  < 0$$, τότε η εξίσωση είναι αδύνατη, δεν έχει ρίζες στους πραγματικούς αριθμούς.
  • Αν $$\Delta  = 0$$, τότε η εξίσωση έχει μια διπλή πραγματική ρίζα την $$\rho  =  - \frac{\beta }{{2\alpha }}$$
  • Αν $$\Delta  > 0$$, τότε 0 η εξίσωση δυο πραγματικές ρίζες τις $${\rho _{1,2}} = \frac{{ - \beta  \pm \sqrt {{\beta ^2} - 4a\gamma } }}{{2a}}$$.

Δες αναλυτικά τη θεωρία για την εξίσωση δευτέρου βαθμού ... εδώ.

 

 Παραγοντοποίηση και εξισώσεις

Η παραγοντοποίηση οδηγεί σε παραστάσεις που περιέχουν μόνο γινόμενα $${\rm A} \cdot {\rm B} \cdot \Gamma ...$$.

Έτσι η εξίσωση $${\rm A} \cdot {\rm B} \cdot \Gamma ... = 0$$ έχει τις λύσεις: $${\rm A} = 0$$ ή $${\rm B} = 0$$ ή $$\Gamma  = 0$$  $$...$$

$${x^2} - 49 = 0 \to {x^2} - {7^2} = 0 \to (x - 7)(x + 7) = 0 \to x - 7 = 0$$ ή $$x + 7 = 0$$ $$ \to $$ $$x = 7$$ ή $$x =  - 7$$

 

Κλασματική εξίσωση

Η εξίσωση, που περιέχει ένα τουλάχιστον κλάσμα με άγνωστο στον παρονομαστή και η οποία ονομάζεται κλασματική εξίσωση.

$$ \frac{4}{x+2} + \frac{4}{x} = \frac{x+8}{x^{2}} $$

Για να ορίζονται οι όροι μιας κλασματικής εξίσωσης πρέπει όλοι οι παρονομαστές να είναι διάφοροι του μηδενός. Στην προηγούμενη εξίσωση πρέπει

$$x \neq 0$$ και $$x \neq -2$$

Στις κλασματικές εξισώσεις που περιέχουν σύνθετα κλάσματα πρέπει όλοι οι εμφανιζόμενοι παρονομαστές να είναι διάφοροι του μηδενός.

Στην εξίσωση $$ \frac{1}{1+ \frac{1}{x} } =5$$ πρέπει

$$x \neq 0$$ και $$x \neq -1$$

( $$ \frac{1}{1+ \frac{1}{x} } = \frac{1}{ \frac{x+1}{x} } = \frac{x}{x+1} $$) 

Δες παράδειγμα με την αναλυτική λύση κλασματκής εξίσωσης.... εδώ.

Δες παράδειγμα επίλυσης προβλήματος με χρήση κλασματκής εξίσωσης.... εδώ.


Ι

Ιδιότητα

Ιδιότητες των πράξεων
Ουδέτερο στοιχείο
  • Στην πρόσθεση είναι το μηδέν: $$ \alpha +0=0+ \alpha = \alpha $$
  • Στον πολλαπλασιασμό είναι το ένα: $$ \alpha \cdot 1=1 \cdot \alpha = \alpha $$
Καταστροφικό στοιχείο
  • Στον πολλαπλασιασμό είναι το μηδέν: $$ \alpha \cdot 0=0 \cdot \alpha =0$$
Απαγορεύεται
  • Η διαίρεση με το μηδέν: Η διαίρεση $$ \frac{ \alpha }{ \beta } $$ επιτρέπεται μόνο αν $$ \beta \neq 0$$
Αντίθετοι αριθμοί
  • α+β=β+α=0 ή α= –β
Αντίστροφοι αριθμοί
  • α·β=β·α=1 ή $$ \alpha = \frac{1}{ \beta } $$ ή $$ \beta = \frac{1}{ \alpha } $$
Αντιμεταθετική ιδιότητα
  • Στην πρόσθεση: $$ \alpha + \beta = \beta + \alpha $$
  • Στον πολλαπλασιασμό: $$ \alpha \cdot \beta = \beta \cdot \alpha $$
Προσεταιριστική ιδιότητα
  • Στην πρόσθεση: $$ \alpha +\left( \beta + \gamma \right)=\left( \alpha + \beta \right)+ \gamma $$
  • Στον πολλαπλασιασμό: $$ \alpha \cdot \left( \beta \cdot \gamma \right)=\left( \alpha \cdot \beta \right) \cdot \gamma $$
Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς
  • την πρόσθεση: (α + β) · γ = α · γ + β · γ.  Mπορεί να γραφεί και στη μορφή: α · γ + β · γ= (α + β) · γ  
  • την αφαίρεση: (α - β) · γ = α · γ - β · γ.  Mπορεί να γραφεί και στη μορφή: α · γ - β · γ= (α - β) · γ   
  • Η δεύτερες μορφές βοηθούν στην Αναγωγή ομοίων όρων.

 


Ισότητα

Ιδιότητες ισότητας

Χρήσιμες ιδιότητες πράξεων
Αν α=β τότε α+γ=β+γ. Αν και στα δύο μέλη μιας ισότητας προσθέσουμε τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε α-γ=β-γ.  Αν και από τα δύο μέλη μιας ισότητας αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε α·γ=β·γ. Αν και τα δύο μέλη μιας ισότητας πολλαπλασιαστούν με τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε $$ \frac{ \alpha }{ \gamma } = \frac{ \beta }{ \gamma } $$  με γ≠0. Αν και τα δύο μέλη μιας ισότητας διαιρεθούν με τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.


Μ

Μ.Κ.Δ.

Μ.Κ.Δ. ακεραίων αλγεβρικών παραστάσεων

Μέγιστος Κοινός Διαιρέτης ( Μ.Κ.Δ. ) δύο ή περισσοτέρων ακεραίων αλγεβρικών παραστάσεων που έχουν αναλυθεί σε γινόμενο πρώτων παραγόντων ονομάζεται, το γινόμενο των κοινών παραγόντων τους με εκθέτη καθενός το μικρότερο από τους εκθέτες του. 

Παράδειγμα

Μ.Κ.Δ. (6(x2 - y2),  4(x2 - 2χy + y2),  12(x - y)3} = ?

Αναλύουμε τις παραστάσεις και τους συντελεστές τους σε γινόμενα πρώτων παραγόντων: 

$$6\left( {{x^2} - {y^2}} \right) = 2 \cdot 3(x - y)(x + y)$$

$$12{(x - y)^3} = {2^2} \cdot 3{(x - y)^3}$$

$$4({x^2} - 2xy + {y^2}) = {2^2}{(x - y)^2}$$

$${\rm M}.{\rm K}.\Delta .\left( {2 \cdot 3(x - y)(x + y){{,2}^2}{{(x - y)}^2},\,\,{2^2} \cdot 3{{(x - y)}^3}} \right) = 2(x - y)$$

 


Μεταβλητή

λέγεται ένα γράμμα π.χ x,y,z,ω,…( ελληνικό ή λατινικό) που παριστάνει έναν οποιοδήποτε αριθμό.

Χρησιμοποιώντας μεταβλητές "μεταφράζουμε" μια φράση σε Αλγεβρική παράσταση.

Παράδειγμα: Το άθροισμα δύο αριθμών πολλαπλασιασμένο επί 9. Αν συμβολίσουμε τους αριθμούς x και y τότε το άθροισμά τους είναι x+y και η ζητούμενη αλγεβρική παράσταση 9(x+y).

 


Μονώνυμο

Μια Ακέραια αλγεβρική παράσταση λέγεται Μονώνυμο, όταν μεταξύ των μεταβλητών της

  • σημειώνεται μόνο η πράξη του πολλαπλασιασμού και
  • οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί.

Για παράδειγμα οι παραστάσεις $$ - 2{x^2}y,\,\,(3 - \sqrt 2 )x{y^3}\,$$ είναι μονώνυμα ενώ οι $$ - 2{x^2}\sqrt y ,\,\,3 - \sqrt 2 x{y^3},\,\,\frac{x}{y}$$ δεν είναι.

Ορολογία

μονώνυμο

  • Συντελεστής λέγεται ο αριθμητικός παράγοντας του μονωνύμου.
  • Κύριο μέρος του μονωνύμου λέγεται το γινόμενο όλων των μεταβλητών του με τους αντίστοιχους εκθέτες τους

  • βαθμόςΒαθμός του μονωνύμου ως προς μια  μεταβλητή  λέγεται ο εκθέτης της μεταβλητής ,
  • Βαθμός του μονωνύμου ως προς όλες τις μεταβλητές του λέγεται το άθροισμα των εκθετών των μεταβλητών του.

 

  • Όμοια είναι τα μονώνυμα που έχουν το ίδιο κύριο μέρος. $$ - 2{x^2}y,\,\,(2 - \sqrt 3 ){x^2}y,\,\,{x^2}y$$.
  • Ίσα είναι τα όμοια μονώνυμα με ίσους συτελεστές$$ - 2{x^2}y$$, $$a{x^2}y$$ με $$a = -2$$
  • Αντίθετα είναι τα μονώνυμα με αντίθετους συντελεστές $${x^2}y$$, $$a{x^2}y$$ με $$a =  - 1$$

 

  •  Σταθερό μονώνυμο είναι κάθε αριθμός. Είναι μονώνυμο μηδενικού βαθμού.
  • Μηδενικό μονώνυμο είναι το μηδέν. Δεν ορίζεται βαθμός.
 Πράξεις μονωνύμων

Το άθροισμα ομοίων μονωνύμων είναι μονώνυμο όμοιο με αυτά και έχει συντελεστή το άθροισμα των συντελεστών τους (Αναγωγή ομοίων όρων).

$$2\sqrt 3 {x^2}y - \,\,(2 - \sqrt 3 ){x^2}y - \,\,{x^2}y = $$
$$2\sqrt 3 {x^2}y - \,\,2{x^2}y + \sqrt 3 {x^2}y - \,\,{x^2}y = $$
$$(2\sqrt 3 - \,\,2 + \sqrt 3 - \,\,1){x^2}y = $$
$$(3\sqrt 3 - \,\,3){x^2}y = $$
$$3(\sqrt 3 - \,\,1){x^2}y$$

Το γινόμενο μονωνύμων είναι μονώνυμο με:

  • συντελεστή το γινόμενο των συντελεστών τους και
  • κύριο μέρος το γινόμενο όλων των μεταβλητών τους με εκθέτη κάθε μεταβλητής το άθροισμα των εκθετών της. 

$$2\sqrt 3 {x^2}y\omega \cdot \,( - \frac{1}{6})x{y^2} = $$
$$2\sqrt 3 \cdot ( - \frac{1}{6}){x^{2 + 1}}{y^{1 + 2}}\omega = $$
$$ - \frac{{\sqrt 3 }}{2}{x^3}{y^3}\omega $$

 Για να διαιρέσουμε μονώνυμα πολλαπλασιάζουμε τον διαιρετέο με τον αντίστροφο του διαιρέτη. 

$$2\sqrt 3 {x^2}y:\,\left[ {( - \frac{1}{6})x{y^2}\omega } \right] = $$

$$2\sqrt 3 {x^2}y \cdot \,\frac{1}{{( - \frac{1}{6})x{y^2}\omega }} = $$

$$\frac{{2\sqrt 3 }}{{( - \frac{1}{6})}} \cdot \frac{{{x^2}}}{x} \cdot \,\frac{y}{{{y^2}}} \cdot \frac{1}{\omega } = $$

$$ - 12\sqrt {3 \cdot } {x^{2 - 1}} \cdot {y^{1 - 2}} \cdot {\omega ^{ - 1}} = $$

$$\frac{{ - 12\sqrt 3 x}}{{y\omega }}$$

Στη  διαίρεση μονωνύμων μπορεί να προκύψει μονώνυμο μικρότερου βαθμού ($$5{x^2}y:\,\,({x^{}}y) = 5x$$), σταθερό μονώνυμο ($$5{x^2}y:\,\,({x^2}y) = 5$$)  ή μη ακέραια αλγεβρική παράσταση όπως στο παράδειγμα.


Π

Παραβολή

παραβολή 1Η συνάρτηση y = αx2 με α ≠ 0.

Η γραφική παράσταση της συνάρτησης $$y= \alpha  x^{2}$$ με είναι μια καμπύλη γραμμή που λέγεται παραβολή
Το σημείο Ο (0, 0) ονομάζεται κορυφή της παραβολής. Η παραβολή έχει άξονα συμμετρίας τον άξονα y΄y.

Αν α  > 0

Η παραβολή βρίσκεται από τον άξονα x΄x και πάνω, που σημαίνει ότι για οποιαδήποτε τιμή του x ισχύει y ≥ 0. Η συνάρτηση παίρνει ελάχιστη τιμή y = 0, όταν x = 0.

Αν α  > 0

Η παραβολή βρίσκεται από τον άξονα x΄x και κάτω, που σημαίνει ότι για οποιαδήποτε τιμή του x ισχύει y≤0  Η συνάρτηση παίρνει μέγιστη τιμή y = 0, όταν x = 0.

 

Η συνάρτηση y = αx2 + βx + γ  με α ≠ 0.

παραβολή 2Ο άξονας συμμετρίας είναι η ευθεία (ε) : x = $$- \frac{ \beta }{2 \alpha } $$ 

H κορυφή της είναι το σημείο Κ ( $$- \frac{ \beta }{2  \alpha } ,- \frac{ \Delta }{4  \alpha } $$ ) 

Τέμνει τον άξονα y'y στο σημείο Α ( 0 , γ )

Οι τετμημένες των σημείων τομής με τον άξονα x'x είναι οι λύσεις της δευτεροβάθμιας εξίσωσης $$0= \alpha x^{2}+ \beta  x+ \gamma $$

$${x_{1,2}} = \frac{{ - \beta  \pm \sqrt {{\beta ^2} - 4a\gamma } }}{{2a}}$$

Τέμνει λοιπόν τον x'x στο σημείο Β (x1 , 0 ) και στο σημείο Γ  (x2 , 0 ).

 

 

Παραδείγματα

  • Συμμετρικές παραβολές ...εδώ.
  • Σημεία τομής παραβολής με τους άξονες ... εδώ.
  • Υπολογισμός μέγιστης τιμής (κορυφή παραβολής) ... εδώ.
  • Πρόβλημα με παραβολή ... εδώ.

 


Παραγοντοποίηση

Η διαδικασία με την οποία μια παράσταση, που είναι άθροισμα, μετατρέπεται σε γινόμενο παραγόντων, λέγεται παραγοντοποίηση.

Αξιοσημείωτες παραγοντοποιήσεις

Παράσταση δύο όρων
Διαφορά τετραγώνων: $${\rm{ }}{\alpha ^2} - {\rm{ }}{\beta ^2} = \left( {\alpha {\rm{  +  }}\beta } \right)\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)$$

$$4{\beta ^2} - 25 = {\left( {2\beta } \right)^{}} - {5^2} = \left( {2\beta  + 5} \right)\left( {2\beta  - 5} \right)$$

$${\alpha ^6} - {\beta ^6} = {\left( {{\alpha ^3}} \right)^2} - {\left( {{\beta ^3}} \right)^2} = \left( {{\alpha ^3} + {\beta ^3}} \right)\left( {{\alpha ^3} - {\beta ^3}} \right) = \left( {\alpha {\rm{  +  }}\beta } \right)\left( {{\alpha ^2}{\rm{  - }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right)\left( {\alpha {\rm{  +  }}\beta } \right)\left( {{\alpha ^2}{\rm{ -  }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right)$$

$${2014^2} - {1986^2} = (2000 + 14)(2000 - 14) = {2000^2} - {14^2} = 4.000.000 - 196 = 3.999.804$$

Διαφορά κύβων: $${\alpha ^3} - {\rm{ }}{\beta ^3} = \left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)\left( {{\alpha ^2} + {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }}$$

$${{\rm{x}}^{\rm{3}}} - 27 = {{\rm{x}}^{\rm{3}}} - {9^3} = \left( {x - 3} \right)\left( {{x^2} - 3x + {3^2}} \right) = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)$$

$${\alpha ^6} - {\beta ^6} = {\left( {{\alpha ^2}} \right)^3} - {\left( {{\beta ^2}} \right)^3} = \left( {{\alpha ^2} - {\beta ^2}} \right)\left[ {{{\left( {{\alpha ^2}} \right)}^2} + {\alpha ^2}{\beta ^2} + {{\left( {{\beta ^2}} \right)}^2}} \right] = \left( {{\alpha ^2} - {\beta ^2}} \right)\left[ {{\alpha ^4} + {\alpha ^2}{\beta ^2} + {\beta ^4}} \right]$$

Άθροισμα κύβων: $${\alpha ^3} - {\rm{ }}{\beta ^3} = \left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)\left( {{\alpha ^2} + {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }}$$

$${\alpha ^6} + {\beta ^6} = {\left( {{\alpha ^2}} \right)^3} + {\left( {{\beta ^2}} \right)^3} = \left( {{\alpha ^2} + {\beta ^2}} \right)\left[ {{{\left( {{\alpha ^2}} \right)}^2} - {\alpha ^2}{\beta ^2} + {{\left( {{\beta ^2}} \right)}^2}} \right] = \left( {{\alpha ^2} + {\beta ^2}} \right)\left[ {{\alpha ^4} - {\alpha ^2}{\beta ^2} + {\beta ^4}} \right]$$

Κοινός παράγοντας 

$${x^5} - x = x\left( {{x^4} - 1} \right) = x\left[ {{{\left( {{x^2}} \right)}^2} - {1^2}} \right] = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)$$

 
Παράσταση τριών όρων
Τέλειο τετράγωνο αθροίσματος ή διαφοράς: $${\alpha ^2} \pm {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2} = {\left( {\alpha {\rm{ }} \pm {\rm{ }}\beta } \right)^2}$$

$${y^4} - {\rm{ }}2{y^2} + {\rm{ }}1 = {\left( {{y^2}} \right)^2} - 2 \cdot \left( {{y^2}} \right) \cdot 1 = {\left( {{y^2} - 1} \right)^2}$$

$$25{\rm{  +  }}10{x^3} + {\rm{ }}{x^6} = {5^2} + 2 \cdot 5 \cdot {x^3} + {\left( {{x^3}} \right)^2} = {\left( {5 + {x^3}} \right)^2}$$

Τριώνυμο της μορφής $${x^2} + (\alpha  + \beta )x + \alpha \beta $$: $${x^2} + (\alpha  + \beta )x + \alpha \beta  = (x + \alpha )(x + \beta )$$

$${x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}\left( {6{\rm{ }} + {\rm{ }}2} \right)x{\rm{ }} + {\rm{ }}6 \cdot 2{\rm{ }} = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}6} \right)\left( {x{\rm{ }} + {\rm{ }}2} \right)$$

$${x^2} - 5x + 6 = {\rm{ }}{x^2} + \left( { - 3 - 2} \right)x{\rm{ }} + {\rm{ }}( - 3) \cdot ( - 2){\rm{ }} = {\rm{ }}\left( {x - 3} \right)\left( {x - 2{\rm{ }}} \right)$$

Τριώνυμο της μορφής $$\alpha {x^2} + \beta x + \gamma  = 0$$ = $$a(x - {\rho _1})(x - {\rho _2})$$ με $${\rho _{1,2}} = \frac{{ - \beta  \pm \sqrt {{b^2} - 4a\gamma } }}{{2a}}$$ 

$$2{x^2} + 5x + 3$$. Η εξίσωση $$2{x^2} + 5x + 3 = 0$$ έχει δυο λύσεις, $${\rho _{1,2}} = \frac{{ - 5 \pm \sqrt {{5^2} - 4 \cdot 2 \cdot 3} }}{2}$$, τις $${\rho _1} =  - 1$$ και $${\rho _1} =  - \frac{3}{2}$$

Έτσι το τριώνυμο γίνεται: $$2{x^2} + 5x + 3 = 2\left[ {x - ( - 1)} \right]\left[ {x - \left( { - \frac{3}{2}} \right)} \right] = 2(x + 1)\left( {x + \frac{3}{2}} \right)$$

Κοινός παράγοντας 

$$ - 4{y^2} + 4y - 1 =  - (4{y^2} - 4y + 1) =  - \left[ {{{\left( {2y} \right)}^2} - 2 \cdot \left( {2y} \right) + {1^2}} \right] =  - {\left( {2y - 1} \right)^2}$$

$$3{x^3} + 12{x^2} - 15x = 3x({x^2} + 4x - 5) = 3x\left[ {{x^2} + (5 - 1)x + ( - 1) \cdot ( + 5)} \right] = 3x(x + 5)(x - 1)$$

 
Παράσταση τεσσάρων όρων
Τέλειος κύβος αθροίσματος ή διαφοράς: $${\alpha ^3} \pm 3{\alpha ^2}\beta  + 3\alpha {\beta ^2} \pm {\beta ^3} = {(\alpha  \pm \beta )^3}$$

$$1 - 4y + 8{y^2} - 8{y^3} = {1^3} - 2 \cdot {1^2} \cdot (2y) + 2 \cdot 1 \cdot {(2y)^2} - {(2y)^3} = {(1 - 2y)^3}$$

Ομαδοποίηση 3-1

$${x^2} - 2x + 1 - {y^2} = ({x^2} - 2 \cdot x \cdot 1 + {1^2}) - {y^2} = {(x - 1)^2} - {y^2} = (x - 1 - y)(x - 1 + y)$$

Ομαδοποίηση 2-2 

$$9{x^3} + 9{x^2} - 4x - 4 = 9{x^2}(x + 1) - 4(x + 1) = (x + 1)(9{x^2} - 4) = (x + 1)\left[ {{{(3x)}^2} - {2^2}} \right] = (x + 1)(3x + 2)(3x - 2)$$

Διάσπαση ενός εκ των τριών όρων και δημιουργία τέταρτου

$$3{x^2} + 5xy + 2{y^2} = 3{x^2} + 3xy + 2xy + 2{y^2} = 3x(x + y) + 2y(x + y) = (x + y)(3x + 2y)$$

$${\alpha ^4} + {\beta ^4} - 7{\alpha ^2}{\beta ^2} = {\alpha ^4} + {\beta ^4} + 2{\alpha ^2}{\beta ^2} - 9{\alpha ^2}{\beta ^2} = {\left( {{\alpha ^2}} \right)^2} + {\left( {{\beta ^2}} \right)^2} + 2{\alpha ^2}{\beta ^2} - {\left( {3\alpha \beta } \right)^2} = {\left( {{\alpha ^2} + {\beta ^2}} \right)^2} - {\left( {3\alpha \beta } \right)^2} = \left( {{\alpha ^2} + {\beta ^2} - 3\alpha \beta } \right)\left( {{\alpha ^2} + {\beta ^2} + 3\alpha \beta } \right)$$

Παραγοντοποίηση και εξισώσεις

Η παραγοντοποίηση οδηγεί σε παραστάσεις που περιέχουν μόνο γινόμενα $${\rm A} \cdot {\rm B} \cdot \Gamma ...$$.

Έτσι η εξίσωση $${\rm A} \cdot {\rm B} \cdot \Gamma ... = 0$$ έχει τις λύσεις: $${\rm A} = 0$$ ή $${\rm B} = 0$$ ή $$\Gamma  = 0$$  $$...$$

$${x^2} - 49 = 0 \to {x^2} - {7^2} = 0 \to (x - 7)(x + 7) = 0 \to x - 7 = 0$$ ή $$x + 7 = 0$$ $$ \to $$ $$x = 7$$ ή $$x =  - 7$$


Πολυώνυμο

Μια αλγεβρική παράσταση λέγεται Πολυώνυμο, όταν μεταξύ των μεταβλητών της

  • σημειώνονται μόνο οι πράξεις της πρόσθεσης και του πολλαπλασιασμού, είναι άθροισμα μονωνύμων.
  • οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί.
  • Βρίσκεται στην ανηγμένη μορφή, δηλαδή έχουν ολοκληρωθεί οι αναγωγές ομοίων όρων. 

Για παράδειγμα η παράσταση $$2{x^2}y + 3{x^2}y - x{y^2} - 2x{y^2}$$ είναι το πολυώνυμο $$5{x^2}y - 3x{y^2}$$.

Ορολογία

πολυώνυμο

  • Όρος λέγεται κάθε μονώνυμο του πολυωνύμου.
  • Διώνυμο ονομάζεται το πολυώνυμο με δυο όρους, $${x^2} - {y^2}$$.
  • Διώνυμο ονομάζεται το πολυώνυμο με τρεις όρους,$${x^2} - 2xy + {y^2}$$.

.

  • βαθμόςΒαθμός  ενός πολυωνύμου ως προς μία ή περισσότερες μεταβλητές του, είναι ο μεγαλύτερος από τους βαθμούς των όρων του.

     

     

  • Ίσα είναι τα πολυώνυμα που έχουν ίσα μονώνυμα. $${x^2} - 2xy + {y^2}$$ = $$a{x^2} + \beta xy + \gamma {y^2}$$, αν $$a = 1$$ & $$\beta  =  - 2$$ & $$\gamma  = 1$$
  • Αντίθετα είναι  τα πολυώνυμα που έχουν μονώνυμα με αντίθετους συντελεστές  Τα πολυώνυμα $${x^2} - 2xy + {y^2}$$ και $$a{x^2} + \beta xy + \gamma {y^2}$$ είναι αντίθετα αν $$a = -1$$ & $$\beta  =   2$$ & $$\gamma  = -1$$

 

  • Σταθερό πολυώνυμο είναι κάθε αριθμός. Είναι πολυώνυμο μηδενικού βαθμού.
  • Μηδενικό πολυώνυμο είναι το μηδέν. Δεν ορίζεται βαθμός.
  • Πολυώνυμο μιας μεταβλητής
    • Το πολυώνυμο $$ - 3x{\rm{ }} + {\rm{ }}2{x^2}{\rm{ }} + {\rm{ }}5$$ έχει μία μεταβλητή την x και για συντομία συμβολίζεται P(x) ή Q(x) ή A(x) κ.τ.λ.
    • Μπορούμε να το γράψουμε έτσι, ώστε κάθε όρος του να είναι μεγαλύτερου βαθμού από τον επόμενό του.Δηλαδή, P(x) =$$2{x^2}{\rm{ }} - {\rm{ }}3x{\rm{ }} + {\rm{ }}5$$. Τότε, λέμε, ότι γράφουμε το πολυώνυμο κατά τις φθίνουσες δυνάμεις του x
    • H αριθμητική τιμή του πολυώνυμου P(x) για x = 5, συμβολίζεται με P(5) και είναι: P(5) = 2·52- 3·5 + 5 = 50 - 15 + 5 = 40.
 Πράξεις πολυωνύμων

Μπορούμε να προσθέσουμε, να αφαιρέσουμε, ή να πολλαπλασιάσουμε πολυώνυμα, χρησιμοποιώντας τις ιδιότητες των πραγματικών αριθμών, όπως φαίνεται στα επόμενα παραδείγματα:

Πρόσθεση

(x3 + 2x2 - 5x + 7) + (4x3 - 5x2 + 3)

=  x3 + 2x2 - 5x + 7 + 4x3 - 5x2 + 3 =

=  (1 + 4)x3 + (2 - 5)x2 - 5x + (7 + 3) =

=  5x3 - 3x2 - 5x + 10       [Πολυώνυμο 3ου βαθμού]

 

(2x3 - x2 + 1) + (-2x3 + 2x - 3) =  

=  2x3 - x2 + 1 - 2x3 + 2x - 3 =

=  -x2 + 2x - 2       [Πολυώνυμο 2ου βαθμού]

   

(x3 - 3x2 - 1) + (-x3 + 3x2 + 1)  = 

= x3 - 3x2 - 1 - x3 + 3x2 + 1 = 0       [Μηδενικό πολυώνυμο]

 

Αφαίρεση

(x3 + 2x2 - 5x + 7) - (4x3 - 5x2 + 3)  

=  x3 + 2 x2 - 5x + 7 - 4x3 + 5x2 - 3

=  -3x3 + 7x2 - 5x + 4       [Πολυώνυμο 3ου βαθμού]

 

Πολλαλασιασμός
(x2 + 5x)(2x3 + 3x - 1) = 

=  x2(2x3 + 3x - 1) + 5x(2x3 + 3x - 1)

=  2x5 + 3x3 - x2 + 10x4 + 15x2 - 5x

=  2x5 + 10x4 + 3x3 + 14x2 - 5x       [Πολυώνυμο 5ου βαθμού]

Για το βαθμό του αθροίσματος και του γινομένου δυο πολυωνύμων ισχύει ότι:

  • Αν το άθροισμα δυο μη μηδενικών πολυωνύμων είναι μη μηδενικό πολυώνυμο, τότε ο βαθμός του είναι ίσος ή μικρότερος από το μέγιστο των βαθμών των δυο πολυωνύμων.
  • Ο βαθμός του γινομένου δυο μη μηδενικών πολυωνύμων είναι ίσος με το άθροισμα των βαθμών των πολυωνύμων αυτών. 

Διαίρεση

  • Αν έχουμε δύο πολυώνυμα Δ(x) (διαιρετέος) και δ(x) (διαιρέτης) με δ (x) ≠ 0 και
  • κάνουμε την διαίρεση Δ(x) : δ(x) ,
  • τότε βρίσκουμε ένα μοναδικό ζεύγος πολυωνύμων
  • π(x) (πηλίκο) και υ(x) (υπόλοιπο) ,
  • για τα οποία ισχύει:
  • Δ(x) = δ(x) π(x) + υ(x) (Ταυτότητα της Ευκλείδειας διαίρεσης), όπου το υ(x) ή είναι ίσο με μηδέν ή έχει βαθμό μικρότερο από το βαθμό του δ(x).

Δείτε  παραδείγματα διαίρεσης

 


Πραγματικοί αριθμοί

Οι Φυσικοί αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ακέραιοι αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ρητοί αριθμοί περιέχονται στους πραγματικούς αριθμούς
Οι Άρρητοι αριθμοί περιέχονται στους πραγματικούς αριθμούς

Άξονας πραγματικών αριθμών

πραγματικοί αριθμοίΟι φυσικοί αριθμοί: 0, 1, 2, 3, ... παριστάνονται στη διπλανή ευθεία με σημεία.
Στην αρχή Ο έχουμε τοποθετήσει το μηδέν (0).

Οι ακέραιοι αριθμοί: ... -3, -2, -1, 0, 1, 2, 3 ... παριστάνονται πάλι με σημεία.
Τοποθετούμε στα δεξιά της αρχής Ο τους θετικούς ακέραιους αριθμούς και στα αριστερά τους αρνητικούς.

Το σύνολο των ρητών αριθμών, δηλαδή των αριθμών που μπορούν να γραφούν στη μορφή, όπου μ ακέραιος και ν φυσικός αριθμός. Οι ρητοί αριθμοί έχουν γνωστή δεκαδική μορφή και γεμίζουν την ευθεία, αλλά όχι πλήρως.

Οι πραγματικοί αριθμοί αποτελούνται όχι μόνο από τους ρητούς αλλά και όλους τους άρρητους.
Οι πραγματικοί αριθμοί καλύπτουν πλήρως την ευθεία, δηλαδή κάθε σημείο της ευθείας αντιστοιχεί σε έναν πραγματικό αριθμό και αντίστροφα κάθε πραγματικός αριθμός αντιστοιχεί σε μοναδικό σημείο της ευθείας.
Για το λόγο αυτό, την ευθεία αυτή την ονομάζουμε ευθεία ή άξονα των πραγματικών αριθμών.

 


Πυθαγόρειο θεώρημα

πυθαγόρειο θεώρημαΤο τετράγωνο της υποτείνουσας ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών του.

ΒΓ2 = ΑΒ2 + ΑΓ2 
 
α2 = β2 + γ2

 

Αντίστροφο Πυθαγόρειο θεώρημα

Αν ισχύει η σχέση  ΚΛ2 = ΜΛ2 + ΜΚ2 μεταξύ των πλευρών ενός τριγώνου ΚΛΜ , τότε το τρίγωνο είναι ορθογώνιο με ορθή γωνία τη γωνία Μ. 

Περισσότερα


Ρ

Ρητή αλγεβρική παράσταση

Μια αλγεβρική παράσταση που είναι κλάσμα με όρους πολυώνυμα, λέγεται ρητή αλγεβρικήπαράσταση ή απλώς ρητή παράσταση.

π.χ. $$A = \frac{{3{x^2} + 12x + 12}}{{{x^2} - 4}}$$

Οι μεταβλητές μιας ρητής παράστασης δεν μπορούν να πάρουν τιμές που μηδενίζουν τον παρονομαστή.

$${x^2} - 4 \ne 0$$ ή $${x^2} \ne 4$$ ή $$x \ne \sqrt 4 $$ ή $$x \ne  \pm 2$$. Η μεταβλητή x μπορεί να έχει ως τιμή κάθε πραγματικό αριθμός εκτός των -2, +2.

Για να απλοποιήσουμε μια ρητή αλγεβρική παράσταση, παραγοντοποιούμε και τους δύο όρους της και διαγράφουμε τον κοινό παράγοντα.

$$A = \frac{{3{x^2} + 12x + 12}}{{{x^2} - 4}} = \frac{{3\left( {{x^2} + 4x + 4} \right)}}{{{x^2} - 4}} = \frac{{3\left( {{x^2} + 2 \cdot 2 \cdot x + {2^2}} \right)}}{{{x^2} - {2^2}}} = \frac{{3{{(x + 2)}^2}}}{{(x - 2)(x + 2)}} = \frac{{3(x + 2)}}{{x - 2}}$$

Οι πράξεις με τις ρητές παραστάσεις γίνονται όπως και οι πράξεις των αριθμητικών κλασμάτων.

  • Δες παρἀδειγμα πρόσθεσης αφαίρεσης ρητών παρατάσεων
  • Δες παρἀδειγμα πολλαπλασιασμού διαίρεσης ρητών παρατάσεων
  • Δες παρἀδειγμα σύνθετου κλάσματος ρητών παρατάσεων

Ρητοί αριθμοί

ρητοί αριθμοίΟι ρητοί αριθμοί μπορούν να γραφούν σε μορφή κλάσματος με ακέραιους όρους που είναι πρώτοι αριθμοί και παρονομαστή διάφορο του μηδενός.

Μορφή ρητού αριθμού: $$ \frac{ \mu }{ \nu } $$ με ν ≠ 0 κια Μ.Κ.Δ. (μ,ν) =1

Κάθε ρητός αριθμός μπορεί να γραφεί και σε δεκαδική μορφή. Αυτό γίνεται κάνοντας τη διαίρεση μ / ν.

Η διαίρεση αυτή μπορεί

  • να ολοκληρωθεί π.χ. $$ \frac{1}{8} $$  = 0,125
  • ή όχι π.χ. $$ \frac{1}{7} $$ = 0,142857142857.... Για τη δεύτερη περίπτωση λέμε ότι η δεκαδική γραφή ενός ρητού αριθμού είναι πάντα περιοδική.

Οι Φυσικοί αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ακέραιοι αριθμοί περιέχονται στους ρητούς αριθμούς

 


Τ

Ταυτότητα

Ταυτότητα λέγεται κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της.

Αξιοσημείωτες ταυτότητες

Το δεύτερα μέλη των ταυτοτήτων που ακολουθούν ονομάζονται αναπτύγματα.

Τετράγωνο αθροίσματος

$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} + {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$

$${\left( {y{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}{y^2} + {\rm{ }}2 \cdot y \cdot 4{\rm{ }} + {\rm{ }}{4^2} = {\rm{ }}{y^2} + {\rm{ }}8y{\rm{ }} + {\rm{ }}16$$

$${\left( {\sqrt 3  + 1} \right)^2} = {\left( {\sqrt 3 } \right)^2} + {\rm{ }}2 \cdot \sqrt 3  \cdot 1{\rm{ }} + {\rm{ }}{{\rm{1}}^2} = {\rm{ }}3 + {\rm{ }}2\sqrt 3 {\rm{ }} + {\rm{ }}1 = 4 + 2\sqrt 3 {\rm{ }}$$

 

Τετράγωνο διαφοράς

$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} - {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$

$${\left( {\omega  - \frac{2}{\omega }} \right)^2} = {\omega ^2} - 2 \cdot \omega  \cdot \frac{2}{\omega } + {\left( {\frac{2}{\omega }} \right)^2} = {\omega ^2} - 4 + \frac{4}{{{\omega ^2}}}$$

$${\left( {1 - \sqrt 7 } \right)^2} = 1 - 2 \cdot 1 \cdot \sqrt 7  + {\left( {\sqrt 7 } \right)^2} = {\rm{ }}3 - {\rm{ }}2\sqrt 7 {\rm{ }} + {\rm{ 7}} = 10 - 2\sqrt 7 {\rm{ }}$$

  

Κύβος αθροίσματος

$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} + {\rm{ }}3{\alpha ^2}\beta  + 3\alpha {\beta ^2} + {\beta ^3}$$

$${\left( {{\rm{2x }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {2x} \right)^3} + {\rm{ }}3 \cdot {\left( {2x} \right)^2} \cdot 1 + 3 \cdot \left( {2x} \right) \cdot {1^2} + {1^3} = 8{x^3} + 12{x^2} + 6x + 1$$

$${\left( {\sqrt {\rm{2}} {\rm{ }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3} + {\rm{ }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot 1 + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {1^2} + {1^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}}  + 3 \cdot 2 \cdot 1 + 3\sqrt 2  + 1 = 2\sqrt {\rm{2}}  + 6 + 3\sqrt 2  + 1 = 5\sqrt {\rm{2}}  + 7$$

 

Κύβος διαφοράς

$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} - {\rm{ }}3{\alpha ^2}\beta  + 3\alpha {\beta ^2} - {\beta ^3}$$

$${\left( {{\omega ^2} - {\rm{ }}2\omega } \right)^3} = {\left( {{\omega ^2}} \right)^3} - {\rm{ }}3 \cdot {\left( {{\omega ^2}} \right)^2} \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot {\left( {2\omega } \right)^2} - {\left( {2\omega } \right)^3} = {\omega ^6} - 3 \cdot \left( {{\omega ^4}} \right) \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot \left( {4{\omega ^2}} \right) - 8{\omega ^3} = {\omega ^6} - 6{\omega ^5} + 12{\omega ^4} - 8{\omega ^3}$$

$${\left( {\sqrt {\rm{2}} {\rm{  -  }}\sqrt {\rm{3}} } \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3}{\rm{ -  }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{3}}  + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {\left( {\sqrt {\rm{3}} } \right)^2} - {\left( {\sqrt {\rm{3}} } \right)^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}}  - 3 \cdot 2 \cdot \sqrt {\rm{3}}  + 3 \cdot \sqrt 2  \cdot 3 - {\left( {\sqrt {\rm{3}} } \right)^2} \cdot \sqrt {\rm{3}}  = 2\sqrt {\rm{2}}  - 6\sqrt {\rm{3}}  + 9\sqrt 2  - 3\sqrt {\rm{3}}  = 11\sqrt 2  - 9\sqrt {\rm{3}} $$

 

Γινόμενο αθροίσματος επί διαφορά

$$\left( {\alpha {\rm{  +  }}\beta } \right)\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right){\rm{  =  }}{\alpha ^2} - {\rm{ }}{\beta ^2}$$

$$\left( {{\alpha ^3}{\rm{  +  }}{\beta ^3}} \right)\left( {{\alpha ^3}{\rm{ }} - {\rm{ }}{\beta ^3}} \right){\rm{  =  }}{\left( {{\alpha ^3}} \right)^2} - {\rm{ }}{\left( {{\beta ^3}} \right)^2} = {\alpha ^6}{\rm{ }} - {\rm{ }}{\beta ^6}$$

$$99 \cdot 101 = \left( {100 - 1} \right)\left( {100 + 1} \right) = {100^2} - {1^2} = 10000 - 1 = 9999$$

 

Τα γινόμενα του αθροίσματος ή της  διαφοράς κύβων

$$\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)\left( {{\alpha ^2} - {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} + {\rm{ }}{\beta ^3}$$  

$$\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }}9} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }} + {\rm{ }}{3^2}} \right){\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}{3^3} = {\rm{ }}{x^3} + {\rm{ }}27$$

$$\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)\left( {{\alpha ^2} + {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} - {\rm{ }}{\beta ^3}$$

$$\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}4} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }} + {\rm{ }}{2^2}} \right){\rm{ }} = {\rm{ }}{x^3} - {\rm{ }}{2^3} = {\rm{ }}{x^3}{\rm{ }} - {\rm{ }}8$$


Τετραγωνική ρίζα

Τετρ. ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετρ. ρίζα του α συμβολίζεται με  $$ \sqrt{ \alpha } $$.

τετραγωνική ρίζα

 

 

 

 Ιδιότητες
  • $$\sqrt 0  = 0$$
  • Η εξίσωση β' βαθμού x2 έχει δυο λύσεις x = $$ \sqrt{ \alpha } $$ και x = -$$ \sqrt{ \alpha } $$
  • $$\sqrt {\alpha  \cdot \beta }  = \sqrt \alpha   \cdot \sqrt \beta  $$
  • $$\sqrt {\frac{\alpha }{\beta }}  = \frac{{\sqrt \alpha  }}{{\sqrt \beta  }}$$

Προσοχή!

  • $$\sqrt {\alpha  + \beta }  \ne \sqrt \alpha   + \sqrt \beta  $$
  • $$\sqrt {\alpha  - \beta }  \ne \sqrt \alpha   - \sqrt \beta  $$

Χρήσιμες ιδιότητες για την απλοποίηση παραστάσεων

Ρίζα δύναμης με άρτιο εκθέτη: $$\sqrt {{\alpha ^{2\nu }}}  = \sqrt {{{\left( {{\alpha ^\nu }} \right)}^2}}  = {\alpha ^\nu }$$


Ρίζα δύναμης με περιττό εκθέτη: $$\sqrt {{\alpha ^{2\nu  + 1}}}  = \sqrt {\alpha  \cdot {\alpha ^{2\nu }}}  = \sqrt \alpha   \cdot {\alpha ^\nu }$$


Τριγωνομετρικοί αριθμοί

Ορισμοί

Για τις οξείες γωνίες ενός ορθογωνίου τριγώνου δίνονται οι εξής ορισμοί.

$${\rm E}\Phi {\rm A}\Pi {\rm T}{\rm O}{\rm M}{\rm E}{\rm N}{\rm H} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}$$

$${\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

$$\Sigma \Upsilon {\rm N}{\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

ορθογώνιο τρίγωνο

 

$$\begin{array}{l}\varepsilon \varphi {\rm B} = \frac{{{\rm A}\Gamma }}{{{\rm A}{\rm B}}} = \frac{\beta }{\gamma }\,\,\,\,\,\,\,\,\,\,\,\,\varepsilon \varphi \Gamma  = \frac{{{\rm A}{\rm B}}}{{{\rm A}\Gamma }} = \frac{\gamma }{\beta }\\\eta \mu {\rm B} = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\eta \mu \Gamma  = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\\\sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\end{array}$$

Γνωρίζουμε ότι σε κάθε ορθογώνιο τρίγωνο η υποτείνουσα είναι μεγαλύτερη από καθεμία από τις κάθετες πλευρές. Επομένως ισχύουν οι ανισώσεις:  0 < ημω < 1 και 0 < συνω < 1

 

 
  Σχέσεις τριγωνομετρικών αριθμών

Για κάθε γωνία ισχύει ότι $$\varepsilon \varphi \omega  = \frac{{\eta \mu \omega }}{{\sigma \upsilon \nu \omega }}\,\,\,\,\left\{ {\frac{{\eta \mu \Gamma }}{{\sigma \upsilon \nu \Gamma }} = \frac{{\frac{\gamma }{\alpha }}}{{\frac{\beta }{\alpha }}} = \frac{{\gamma  \cdot \alpha }}{{\beta  \cdot \alpha }} = \frac{\gamma }{\beta } = \varepsilon \varphi \Gamma } \right\}$$

Όπως φαίνεται $$\eta \mu {\rm B} = \sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,$$ και $$\eta \mu \Gamma  = \sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }$$, δηλαδή το ημίτονο μιας γωνίας ισούται με το συνημίτονο της συμπληρωματικής της.

Παρατηρήστε ότι $$\,\varepsilon \varphi \Gamma  = \frac{1}{{\varepsilon \varphi {\rm B}}}$$, δηλαδή οι εφαπτομένες συμπληρωματικών γωνιών είναι αριθμοί αντίστροφοι, έχουν γινόμενο 1 $$\varepsilon \varphi {\rm B} \cdot \varepsilon \varphi \Gamma  = \frac{\gamma }{\beta } \cdot \frac{\beta }{\gamma } = 1\,$$.

Μεταβολές τριγωνομετρικών αριθμών οξειών γωνιών

Όταν μια οξεία γωνία αυξάνεται, τότε: αυξάνεται το ημίτονό της, ελαττώνεται το συνημίτονό της και αυξάνεται η εφαπτομένη της.

Χαρακτηριστικές τιμές τριγωνομετρικών αριθμών οξειών γωνιών

$$\begin{array}{ccccccccccccccc}{}&{{{30}^o}}&{{{45}^o}}&{{{60}^o}}\\{\eta \mu }&{\frac{1}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 3 }}{2}}\\{\sigma \upsilon \nu }&{\frac{{\sqrt 3 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{1}{2}}\\{\varepsilon \varphi }&{\frac{{\sqrt 3 }}{3}}&1&{\sqrt 3 }\end{array}$$


Υ

Υπερβολή

υπερβολήH γραφική παράσταση της συνάρτησης  $$y= \frac{ \alpha }{x} $$ όπου $$ \alpha \neq 0$$, λέγεται υπερβολή και αποτελείται από δύο κλάδους που βρίσκονται:

  • Στο 1ο και στο 3ο τεταρτημόριο των αξόνων, όταν $$ \alpha >0$$.
  • Στο 2ο και στο 4ο τεταρτημόριο των αξόνων, όταν $$ \alpha <0$$

Και στις δύο περιπτώσεις η γραφική παράσταση μιας υπερβολής έχει:

  • Κέντρο συμμετρίας την αρχή Ο των αξόνων.
  • Άξονες συμμετρίας τις διχοτόμους των γωνιών των αξόνων, δηλαδή τις ευθείες με εξισώσεις $$y=x$$ και $$y=-x$$.

Όταν οι μεταβλητές x , y εκφράζουν ποσά / μεγέθη, τότε τα ποσά / μεγέθη αυτά είναι αντιστρόφως ανάλογα, το γινόμενό τους είναι η σταθερά α.

Δεἰτε ένα παράδειγμα αντιστρόφως ποσών και τη μελέτη με τη χρήση συναρτήσεων και γραφικών... εδώ.


Φ

Φυσικοί αριθμοί

Οι αριθμοί 0, 1, 2, 3, 4, 5, 6......... 98, 99, 100........ 1999, 2000, 2001, ... ονομάζονται φυσικοί αριθμοί.

φυσικοί αριθμοί

Κάθε φυσικός αριθμός έχει έναν επόμενο και ένα προηγούμενο φυσικό αριθμό, εκτός από το 0 που έχει μόνο επόμενο, το 1.

Περισσότερα...



Σελίδα:  1  2  3  (Επόμενο)
  ΟΛΑ