Για να συγκρίνουμε λοιπόν δύο πραγματικούς αριθμούς α και β, που δεν έχουν παρασταθεί με σημεία ενός άξονα, βρίσκουμε τη διαφορά τους α - β και εξετάζουμε αν είναι θετική ή αρνητική ή μηδέν.
Αν α - β > 0 τότε α > β Αν α - β < 0 τότε α< β Αν α - β = 0 τότε α = β
Διάταξη
Δύο ή περισσότεροι πραγματικοί αριθμοί που έχουν παρασταθεί με σημεία ενός άξονα είναι διατεταγμένοι. Άρα:
Κάθε θετικός αριθμός είναι μεγαλύτερος από το μηδέν. Κάθε αρνητικός αριθμός είναι μικρότερος από το μηδέν. Κάθε θετικός αριθμός είναι μεγαλύτερος από κάθε αρνητικό αριθμό.
Αν α > β τότε α + γ > β + γ και α - γ > β - γ. Αν και στα δύο μέλη μιας ανισότητας προσθέσουμε ή αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.
Αν α > β και γ > 0 τότε α γ > β γ και $$ \frac{ \alpha }{ \gamma } > \frac{ \beta }{ \gamma } $$. Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο θετικό αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.
Αν α > β και γ < 0 τότε α γ < β γ και $$ \frac{ \alpha }{ \gamma } < \frac{ \beta }{ \gamma } $$. Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο αρνητικό αριθμό, τότε προκύπτει ανισότητα αντίθετης φοράς
Αν α > β και γ > δ τότε α + γ > β + δ. Αν προσθέσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά, τότε προκύπτει ανισότητα με την ίδια φορά..
Αν α, β, γ, δ θετικοί αριθμοί με α > β και γ > δ τότε αγ > βδ. Αν πολλαπλασιάσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά και θετικά μέλη, τότε προκύπτει ανισότητα με την ίδια φορά.
α2 ≥ 0. Το τετράγωνο κάθε πραγματικού αριθμού α είναι μη αρνητικός αριθμός. Αν για τους πραγματικούς αριθμούς α, β ισχύει α2 + β2 = 0, τότε α = 0 και β = 0.
Αν α > β και β > γ τότε α >γ. Μεταβατική ιδιότητα.