Η διαδικασία με την οποία μια παράσταση, που είναι άθροισμα, μετατρέπεται σε γινόμενο παραγόντων, λέγεται παραγοντοποίηση.
$$4{\beta ^2} - 25 = {\left( {2\beta } \right)^{}} - {5^2} = \left( {2\beta + 5} \right)\left( {2\beta - 5} \right)$$
$${\alpha ^6} - {\beta ^6} = {\left( {{\alpha ^3}} \right)^2} - {\left( {{\beta ^3}} \right)^2} = \left( {{\alpha ^3} + {\beta ^3}} \right)\left( {{\alpha ^3} - {\beta ^3}} \right) = \left( {\alpha {\rm{ + }}\beta } \right)\left( {{\alpha ^2}{\rm{ - }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right)\left( {\alpha {\rm{ + }}\beta } \right)\left( {{\alpha ^2}{\rm{ - }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right)$$
$${2014^2} - {1986^2} = (2000 + 14)(2000 - 14) = {2000^2} - {14^2} = 4.000.000 - 196 = 3.999.804$$
$${{\rm{x}}^{\rm{3}}} - 27 = {{\rm{x}}^{\rm{3}}} - {9^3} = \left( {x - 3} \right)\left( {{x^2} - 3x + {3^2}} \right) = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)$$
$${\alpha ^6} - {\beta ^6} = {\left( {{\alpha ^2}} \right)^3} - {\left( {{\beta ^2}} \right)^3} = \left( {{\alpha ^2} - {\beta ^2}} \right)\left[ {{{\left( {{\alpha ^2}} \right)}^2} + {\alpha ^2}{\beta ^2} + {{\left( {{\beta ^2}} \right)}^2}} \right] = \left( {{\alpha ^2} - {\beta ^2}} \right)\left[ {{\alpha ^4} + {\alpha ^2}{\beta ^2} + {\beta ^4}} \right]$$
$${\alpha ^6} + {\beta ^6} = {\left( {{\alpha ^2}} \right)^3} + {\left( {{\beta ^2}} \right)^3} = \left( {{\alpha ^2} + {\beta ^2}} \right)\left[ {{{\left( {{\alpha ^2}} \right)}^2} - {\alpha ^2}{\beta ^2} + {{\left( {{\beta ^2}} \right)}^2}} \right] = \left( {{\alpha ^2} + {\beta ^2}} \right)\left[ {{\alpha ^4} - {\alpha ^2}{\beta ^2} + {\beta ^4}} \right]$$
$${x^5} - x = x\left( {{x^4} - 1} \right) = x\left[ {{{\left( {{x^2}} \right)}^2} - {1^2}} \right] = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)$$
$${y^4} - {\rm{ }}2{y^2} + {\rm{ }}1 = {\left( {{y^2}} \right)^2} - 2 \cdot \left( {{y^2}} \right) \cdot 1 = {\left( {{y^2} - 1} \right)^2}$$
$$25{\rm{ + }}10{x^3} + {\rm{ }}{x^6} = {5^2} + 2 \cdot 5 \cdot {x^3} + {\left( {{x^3}} \right)^2} = {\left( {5 + {x^3}} \right)^2}$$
$${x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}\left( {6{\rm{ }} + {\rm{ }}2} \right)x{\rm{ }} + {\rm{ }}6 \cdot 2{\rm{ }} = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}6} \right)\left( {x{\rm{ }} + {\rm{ }}2} \right)$$
$${x^2} - 5x + 6 = {\rm{ }}{x^2} + \left( { - 3 - 2} \right)x{\rm{ }} + {\rm{ }}( - 3) \cdot ( - 2){\rm{ }} = {\rm{ }}\left( {x - 3} \right)\left( {x - 2{\rm{ }}} \right)$$
$$2{x^2} + 5x + 3$$. Η εξίσωση $$2{x^2} + 5x + 3 = 0$$ έχει δυο λύσεις, $${\rho _{1,2}} = \frac{{ - 5 \pm \sqrt {{5^2} - 4 \cdot 2 \cdot 3} }}{2}$$, τις $${\rho _1} = - 1$$ και $${\rho _1} = - \frac{3}{2}$$
Έτσι το τριώνυμο γίνεται: $$2{x^2} + 5x + 3 = 2\left[ {x - ( - 1)} \right]\left[ {x - \left( { - \frac{3}{2}} \right)} \right] = 2(x + 1)\left( {x + \frac{3}{2}} \right)$$
$$ - 4{y^2} + 4y - 1 = - (4{y^2} - 4y + 1) = - \left[ {{{\left( {2y} \right)}^2} - 2 \cdot \left( {2y} \right) + {1^2}} \right] = - {\left( {2y - 1} \right)^2}$$
$$3{x^3} + 12{x^2} - 15x = 3x({x^2} + 4x - 5) = 3x\left[ {{x^2} + (5 - 1)x + ( - 1) \cdot ( + 5)} \right] = 3x(x + 5)(x - 1)$$
$$1 - 4y + 8{y^2} - 8{y^3} = {1^3} - 2 \cdot {1^2} \cdot (2y) + 2 \cdot 1 \cdot {(2y)^2} - {(2y)^3} = {(1 - 2y)^3}$$
$${x^2} - 2x + 1 - {y^2} = ({x^2} - 2 \cdot x \cdot 1 + {1^2}) - {y^2} = {(x - 1)^2} - {y^2} = (x - 1 - y)(x - 1 + y)$$
$$9{x^3} + 9{x^2} - 4x - 4 = 9{x^2}(x + 1) - 4(x + 1) = (x + 1)(9{x^2} - 4) = (x + 1)\left[ {{{(3x)}^2} - {2^2}} \right] = (x + 1)(3x + 2)(3x - 2)$$
$$3{x^2} + 5xy + 2{y^2} = 3{x^2} + 3xy + 2xy + 2{y^2} = 3x(x + y) + 2y(x + y) = (x + y)(3x + 2y)$$
$${\alpha ^4} + {\beta ^4} - 7{\alpha ^2}{\beta ^2} = {\alpha ^4} + {\beta ^4} + 2{\alpha ^2}{\beta ^2} - 9{\alpha ^2}{\beta ^2} = {\left( {{\alpha ^2}} \right)^2} + {\left( {{\beta ^2}} \right)^2} + 2{\alpha ^2}{\beta ^2} - {\left( {3\alpha \beta } \right)^2} = {\left( {{\alpha ^2} + {\beta ^2}} \right)^2} - {\left( {3\alpha \beta } \right)^2} = \left( {{\alpha ^2} + {\beta ^2} - 3\alpha \beta } \right)\left( {{\alpha ^2} + {\beta ^2} + 3\alpha \beta } \right)$$
Η παραγοντοποίηση οδηγεί σε παραστάσεις που περιέχουν μόνο γινόμενα $${\rm A} \cdot {\rm B} \cdot \Gamma ...$$.
Έτσι η εξίσωση $${\rm A} \cdot {\rm B} \cdot \Gamma ... = 0$$ έχει τις λύσεις: $${\rm A} = 0$$ ή $${\rm B} = 0$$ ή $$\Gamma = 0$$ $$...$$
$${x^2} - 49 = 0 \to {x^2} - {7^2} = 0 \to (x - 7)(x + 7) = 0 \to x - 7 = 0$$ ή $$x + 7 = 0$$ $$ \to $$ $$x = 7$$ ή $$x = - 7$$
» Το λεξικό "Μαθηματική ορολογία"