Ρητή αλγεβρική παράσταση
Μια αλγεβρική παράσταση που είναι κλάσμα με όρους πολυώνυμα, λέγεται ρητή αλγεβρικήπαράσταση ή απλώς ρητή παράσταση.
π.χ. $$A = \frac{{3{x^2} + 12x + 12}}{{{x^2} - 4}}$$
Οι μεταβλητές μιας ρητής παράστασης δεν μπορούν να πάρουν τιμές που μηδενίζουν τον παρονομαστή.
$${x^2} - 4 \ne 0$$ ή $${x^2} \ne 4$$ ή $$x \ne \sqrt 4 $$ ή $$x \ne \pm 2$$. Η μεταβλητή x μπορεί να έχει ως τιμή κάθε πραγματικό αριθμός εκτός των -2, +2.
Για να απλοποιήσουμε μια ρητή αλγεβρική παράσταση, παραγοντοποιούμε και τους δύο όρους της και διαγράφουμε τον κοινό παράγοντα.
$$A = \frac{{3{x^2} + 12x + 12}}{{{x^2} - 4}} = \frac{{3\left( {{x^2} + 4x + 4} \right)}}{{{x^2} - 4}} = \frac{{3\left( {{x^2} + 2 \cdot 2 \cdot x + {2^2}} \right)}}{{{x^2} - {2^2}}} = \frac{{3{{(x + 2)}^2}}}{{(x - 2)(x + 2)}} = \frac{{3(x + 2)}}{{x - 2}}$$
Οι πράξεις με τις ρητές παραστάσεις γίνονται όπως και οι πράξεις των αριθμητικών κλασμάτων.
- Δες παρἀδειγμα πρόσθεσης αφαίρεσης ρητών παρατάσεων
- Δες παρἀδειγμα πολλαπλασιασμού διαίρεσης ρητών παρατάσεων
- Δες παρἀδειγμα σύνθετου κλάσματος ρητών παρατάσεων