Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Σελίδα:  1  2  3  (Επόμενο)
  ΟΛΑ

Α

Ακέραιοι αριθμοί

Ακέραιοι αρθμοίΑκέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς.

Οι Φυσικοί αριθμοί περιέχονται στους ακεραίους αριθμούς

Αλγεβρική παράσταση

Μια παράσταση που περιέχει πράξεις με αριθμούς και μεταβλητές ονομάζεται αλγεβρική παράσταση.
Για παράδειγμα, η παράσταση 2·x- 5·x+5 είναι μια αλγεβρική παράσταση.

Όταν γράφουμε αλγεβρικές παραστάσεις, συνήθως δε βάζουμε το σύμβολο (·) του πολλαπλασιασμού μεταξύ των αριθμών και των μεταβλητών ή μεταξύ των μεταβλητών. Έτσι η προηγούμενη παράσταση γράφεται 2x- 5x+5.

Oι προσθετέοι  2x & 5x & 5  λέγονται όροι αυτής.

Απλοποιούμε τη μορφή των παραστάσεων κάνοντας Αναγωγή ομοίων όρων

Αναγωγή ομοίων όρων

Η διαδικασία αυτή με την οποία γράφουμε σε απλούστερη μορφή αλγεβρικές παραστάσεις, ονομάζεται «αναγωγή ομοίων όρων». Βασίζεται στην Eπιμεριστική ιδιότητα.

7 · α + 8 · α = (7 + 8) · α = 15 · α
x + 4 · x – 2 · x = (1 + 4 – 2) · x = 3 · x
5 · t – 6 · t – 8 · t = (5 – 6 – 8) · t = –9 · t

Ανάλογα ποσά

  • Δύο ποσά λέγονται ανάλογα, εάν μεταβάλλονται με τέτοιο τρόπο, που όταν οι τιμές του ενός πολλαπλασιάζονται με έναν αριθμό, τότε και οι αντίστοιχες τιμές του άλλου να πολλαπλασιάζονται με τον ίδιο αριθμό.
  • Δύο ποσά x και y είναι ανάλογα, όταν οι αντίστοιχες τιμές τους δίνουν πάντα ίδιο πηλίκο: bold y over bold x bold equals bold italic alpha  . Το πηλίκο α λέγεται συντελεστής αναλογίας.
    • Τα ανάλογα ποσά x και y συνδέονται με τη σχέση: bold italic y bold equals bold italic alpha bold times bold italic x  όπου α ο συντελεστής αναλογίας.
    • Όταν το ποσό y είναι ποσοστό του ποσού x, τα δύο ποσά συνδέονται με τη σχέση bold italic y bold equals bold alpha over bold 100 bold times bold italic x  και είναι ανάλογα, με συντελεστή αναλογίας το bold alpha over bold 100 bold equals bold italic alpha bold percent sign.
  • Η σχέση bold italic y bold equals bold italic alpha bold times bold italic x εκφράζει μια αλληλεπίδραση των ποσών x και y. 
    Συγκεκριμένα, ο διπλασιασμός, τριπλασιασμός κ.ο.κ. του ενός ποσού επιφέρει διπλασιασμό, τριπλασιασμό κ.ο.κ. του άλλου ποσού. 
  • Τα σημεία που αντιστοιχούν στα ζεύγη τιμών (x, y) δύο ανάλογων ποσών βρίσκονται πάνω σε μία ημιευθεία με αρχή την αρχή Ο (0,0) των ημιαξόνων. Ο συντελεστής αναλογίας είναι η κλίση της ευθείας.

Ανισότητα

Σύγκριση

Για να συγκρίνουμε λοιπόν δύο πραγματικούς αριθμούς α και β, που δεν έχουν παρασταθεί με σημεία ενός άξονα, βρίσκουμε τη διαφορά τους α - β και εξετάζουμε αν είναι θετική ή αρνητική ή μηδέν.

Αν α - β > 0 τότε α > β
Αν α - β < 0 τότε α< β
Αν α - β = 0 τότε α = β

Διάταξη

Διάταξη-Άξονας

Δύο ή περισσότεροι πραγματικοί αριθμοί που έχουν παρασταθεί με σημεία ενός άξονα είναι διατεταγμένοι. Άρα:

Κάθε θετικός αριθμός είναι μεγαλύτερος από το μηδέν.
Κάθε αρνητικός αριθμός είναι μικρότερος από το μηδέν.
Κάθε θετικός αριθμός είναι μεγαλύτερος από κάθε αρνητικό αριθμό.

Ιδιότητες ανισότητας- διάταξης


Αν α > β τότε α + γ > β + γ και α - γ > β - γ.  Αν και στα δύο μέλη μιας ανισότητας προσθέσουμε ή αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ > 0 τότε α γ > β γ και $$ \frac{ \alpha }{ \gamma } > \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο θετικό αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ < 0 τότε α γ < β γ και $$ \frac{ \alpha }{ \gamma } < \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο αρνητικό αριθμό, τότε προκύπτει ανισότητα αντίθετης φοράς

Αν α > β και γ > δ τότε α + γ > β + δ. Αν προσθέσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά, τότε προκύπτει ανισότητα με την ίδια φορά..

Αν α, β, γ, δ θετικοί αριθμοί με α > β και γ > δ τότε αγ > βδ.  Αν πολλαπλασιάσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά και θετικά μέλη, τότε προκύπτει ανισότητα με την ίδια φορά.

α2 ≥ 0. Το τετράγωνο κάθε πραγματικού αριθμού α είναι μη αρνητικός αριθμός. Αν για τους πραγματικούς αριθμούς α, β ισχύει α2 + β2 = 0, τότε α = 0 και β = 0.

Αν α > β και β > γ τότε α > γ. Μεταβατική ιδιότητα.

Δείτε παράδειγμα ασκήσεων με ανισώσεις ... εδώ.

 

Ανίσωση

Ονομάζουμε ανίσωση την ανισότητα δύο αλγεβρικών παραστάσεων που περιέχουν τουλάχιστον μια μεταβλητή που ονομάζεται άγνωστος.

π.χ. ανίσωση είναι η παράσταση 2x+5x-3≥8(x+2)

  • Η αλγεβρική παράσταση αριστερά ή δεξιά του ίσον λέγεται μέλος της ανίσωσης.
  • Οι όροι που περιέχουν μεταβλητή λέγονται άγνωστοι όροι (2x, 5x, x), ενώ οι άλλοι λέγονται γνωστοί όροι.
  • Λύση ή ρίζα της ανίσωσης είναι η τιμές του αγνώστου που επαληθεύουν την ανιισότητα.
  • Η διαδικασία αναζήτησης της λύσης της ανίσωσης λέγεται επίλυση της ανίσωσης

 

Αντιστρόφως Ανάλογα Ποσά

Δύο μεγέθη είναι αντιστρόφως ανάλογα, στην περίπτωση, που η μεταβολή τους είναι τέτοια, ώστε: όταν το ένα μέγεθος πολλαπλασιάζεται επί έναν αριθμό, το άλλο διαιρείται με τον ίδιο αριθμό.

  • Όταν δύο ποσά x και y είναι αντιστρόφως ανάλογα, το γινόμενο των αντίστοιχων τιμών τους παραμένει σταθερό: bold italic y bold times bold italic x bold equals bold italic alpha bold comma bold space bold italic alpha bold not equal to bold 0
x y x · y = 30
5 6 5 · 6 = 30
15 2 15 · 2 =30
 
  • Στην περίπτωση που α = 1, τα x και y είναι αντίστροφοι αριθμοί.
  • Τα σημεία που παριστούν τα ζεύγη (x, y) βρίσκονται σε μία καμπύλη γραμμή. Η καμπύλη αυτή ονομάζεται υπερβολή.
  • Η υπερβολή δεν τέμνει ποτέ τους ημιάξονες Οx και Οy, διότι οι συντεταγμένες των σημείων της δεν παίρνουν ποτέ την τιμή 0.

Απλές εξισώσεις

  • Εξίσωση με έναν άγνωστο είναι μία ισότητα, που περιέχει αριθμούς και ένα γράμμα (άγνωστος).

Οι ισότητες:

x + 5 = 12, y – 2 = 3, 10 – z = 1
ω : 5 = 4, 7 · φ =12, 24 : ψ = 6

είναι εξισώσεις

  • Λύση ή ρίζα της εξίσωσης είναι ο αριθμός που, όταν αντικαταστήσει τον άγνωστο, επαληθεύει την ισότητα.

Λύση ή ρίζα της εξίσωσης 
x – 7 = 5 είναι ο αριθμός 12 
διότι 12 – 7 = 5 
Τη λύση τη γράφουμε: x = 12

 
  • Η διαδικασία, μέσω της οποίας, βρίσκουμε τη λύση της εξίσωσης, λέγεται επίλυση της εξίσωσης.
Τον άγνωστο μιας εξίσωσης τον συμβολίζουμε με ένα γράμμα π.χ. χ, y, z, ω, φ, ψ κ.λπ.
 
  • Μια εξίσωση λέγεται ταυτότητα ή αόριστη, όταν όλοι οι αριθμοί είναι λύσεις της.

Οι εξισώσεις

x = x ή 0 · 2 = 0

είναι αόριστες ή ταυτότητες.

 
  • Μια εξίσωση λέγεται αδύνατη, όταν κανένας αριθμός δεν την επαληθεύει

Οι εξισώσεις

x + 2 = x + 6 ή 0 · ω = 5

είναι αδύνατες.

Απόλυτη τιμή

απόλυτη τιμήΗ απόλυτη τιμή ενός ρητού αριθμού α εκφράζει την απόσταση του σημείου μετετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με |α|.

Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι και έχουν την ίδια απόλυτη τιμή.

Ο αντίθετος του x είναι ο -x.

απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός|+6| = 6.

απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. |-6| = -(6-)=6

H απόλυτη τιμή του μηδενός είναι το μηδέν.

Αριθμητική παράσταση

ονομάζεται μια παράσταση που περιέχει πράξεις με αριθμούς..
Για παράδειγμα, η παράσταση  2·3-4·(-3)+5 είναι μια αριθμητική παράσταση. 


Σελίδα:  1  2  3  (Επόμενο)
  ΟΛΑ