Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Ρ

Ρητοί αριθμοί

ρητοί αριθμοίΟι ρητοί αριθμοί μπορούν να γραφούν σε μορφή κλάσματος με ακέραιους όρους που είναι πρώτοι αριθμοί και παρονομαστή διάφορο του μηδενός.

Μορφή ρητού αριθμού: $$ \frac{ \mu }{ \nu } $$ με ν ≠ 0 κια Μ.Κ.Δ. (μ,ν) =1

Κάθε ρητός αριθμός μπορεί να γραφεί και σε δεκαδική μορφή. Αυτό γίνεται κάνοντας τη διαίρεση μ / ν.

Η διαίρεση αυτή μπορεί

  • να ολοκληρωθεί π.χ. $$ \frac{1}{8} $$  = 0,125
  • ή όχι π.χ. $$ \frac{1}{7} $$ = 0,142857142857.... Για τη δεύτερη περίπτωση λέμε ότι η δεκαδική γραφή ενός ρητού αριθμού είναι πάντα περιοδική.

Οι Φυσικοί αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ακέραιοι αριθμοί περιέχονται στους ρητούς αριθμούς