Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Κ

Κριτήρια Διαιρετότητας

  • Κριτήρια Διαιρετότητας με 2, 3, 4, 5, 9, 10 ή 25 λέγονται οι κανόνες με τους οποίους μπορούμε να συμπεραίνουμε, χωρίς να κάνουμε τη διαίρεση, αν ένας φυσικός αριθμός διαιρείται με τους αριθμούς αυτούς.
    • Ένας φυσικός αριθμός διαιρείται με 10 αν λήγει σε ένα μηδενικό.
    • Ένας φυσικός αριθμός διαιρείται με το 2, αν το τελευταίο ψηφίο είναι 0, 2, 4, 6, 8.
    • Ένας φυσικός αριθμός διαιρείται με το 5, αν λήγει σε 0 ή 5.
    • Ένας φυσικός αριθμός διαιρείται με το 3 ή το 9, αν το άθροισμα των ψηφίων του διαιρείται με το 3 ή το 9 αντίστοιχα.
    • Ένας φυσικός αριθμός διαιρείται συγχρόνως με το 4 ή και το 25, αν τα δύο τελευταία ψηφία του είναι μηδέν.