Αρνητικοί αριθμοί

Οι αρνητικοί αριθμοί με πρόσημο - , είναι οι συμμετρικοί των θετικών αριθμών, με πρόσημο + (το οποίο παραλείπεται όταν δε δημιουργείται ασάφεια. 

  • Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός
  • Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. +5 , +1,25 , +$$ \frac{5}{7} $$ ή -5 , -1,25 , -$$ \frac{5}{7} $$
  • Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. -5 , +7,2 
Παράσταση των ρητών αριθμών με σημεία μιας ευθείας

 Αν θεωρήσουμε αριστερά της αρχής Ο του ημιάξονα Οx των αριθμών, τον αντικείμενο αυτού ημιάξονα Οx', θα έχουμε τη δυνατότητα, με αυτόν τον τρόπο, να παραστήσουμε όλους τους ρητούς αριθμούς.

άξονας αριθμών

Το σημείο Α έχει τετμημένη 4 και το σημείο Β έχει τετμημένη -2.

Απόλυτη τιμή

Πράξεις με αρνητικούς αριθμούς
Πρόσθεση
  • Αν οι αριθμοί είναι ομόσημοι, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμα βάζουμε το κοινό τους πρόσημο: +2+3=+(2+3)=+5 , -2-3=-(2+3)=-5
  • Αν οι αριθμοί είναι ετερόσημοι, αφαιρούμε τη μικρότερη απόλυτη τιμή από τη μεγαλύτερη και στη διαφορά βάζουμε το πρόσημο της μεγαλύτερη απόλυτης τιμής: -2+3=+(3-2) =+1 , +2-3=-(3-2)=-1
Αφαίρεση
  • Στον μειωτέο α, πρσθέτουμα τον αντίθετο του αφαιρετέου. α-β=α+(-β):  2-(-3)=2+(+3)=+5 , 2-(+3)=2+(-3)=-1
Πολλαπλασιασμός 
  • Αν οι αριθμοί είναι ομόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε θετικό πρόσημο: (+2)·(+3)=+6 , (-2)·(-3)=+6
  • Αν οι αριθμοί είναι ετερόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε αρνητικό πρόσημο: (+2)·(-3)=-6 , (-2)·(+3)=-6
Διαίρεση
  • Πολλαπλασιάζουμε τον διαιρετέο α με τον αντίστροφο $$ \frac{1}{ \beta } $$ του διαιρέτη β. α:β= $$ \alpha \cdot \frac{1}{ \beta } $$, με β≠0. 
  • Για τα πρόσημα ισχύει ο κανόνας του πολλαπλασιασμού.
  • (+3): (-$$ \frac{3}{5} $$) = (+3)·(-$$ \frac{5}{3} $$) =-5

» Το λεξικό "Μαθηματική ορολογία"