Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Τ

Ταυτότητα

Ταυτότητα λέγεται κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της.

Αξιοσημείωτες ταυτότητες

Το δεύτερα μέλη των ταυτοτήτων που ακολουθούν ονομάζονται αναπτύγματα.

Τετράγωνο αθροίσματος

$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} + {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$

$${\left( {y{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}{y^2} + {\rm{ }}2 \cdot y \cdot 4{\rm{ }} + {\rm{ }}{4^2} = {\rm{ }}{y^2} + {\rm{ }}8y{\rm{ }} + {\rm{ }}16$$

$${\left( {\sqrt 3  + 1} \right)^2} = {\left( {\sqrt 3 } \right)^2} + {\rm{ }}2 \cdot \sqrt 3  \cdot 1{\rm{ }} + {\rm{ }}{{\rm{1}}^2} = {\rm{ }}3 + {\rm{ }}2\sqrt 3 {\rm{ }} + {\rm{ }}1 = 4 + 2\sqrt 3 {\rm{ }}$$

 

Τετράγωνο διαφοράς

$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} - {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$

$${\left( {\omega  - \frac{2}{\omega }} \right)^2} = {\omega ^2} - 2 \cdot \omega  \cdot \frac{2}{\omega } + {\left( {\frac{2}{\omega }} \right)^2} = {\omega ^2} - 4 + \frac{4}{{{\omega ^2}}}$$

$${\left( {1 - \sqrt 7 } \right)^2} = 1 - 2 \cdot 1 \cdot \sqrt 7  + {\left( {\sqrt 7 } \right)^2} = {\rm{ }}3 - {\rm{ }}2\sqrt 7 {\rm{ }} + {\rm{ 7}} = 10 - 2\sqrt 7 {\rm{ }}$$

  

Κύβος αθροίσματος

$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} + {\rm{ }}3{\alpha ^2}\beta  + 3\alpha {\beta ^2} + {\beta ^3}$$

$${\left( {{\rm{2x }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {2x} \right)^3} + {\rm{ }}3 \cdot {\left( {2x} \right)^2} \cdot 1 + 3 \cdot \left( {2x} \right) \cdot {1^2} + {1^3} = 8{x^3} + 12{x^2} + 6x + 1$$

$${\left( {\sqrt {\rm{2}} {\rm{ }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3} + {\rm{ }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot 1 + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {1^2} + {1^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}}  + 3 \cdot 2 \cdot 1 + 3\sqrt 2  + 1 = 2\sqrt {\rm{2}}  + 6 + 3\sqrt 2  + 1 = 5\sqrt {\rm{2}}  + 7$$

 

Κύβος διαφοράς

$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} - {\rm{ }}3{\alpha ^2}\beta  + 3\alpha {\beta ^2} - {\beta ^3}$$

$${\left( {{\omega ^2} - {\rm{ }}2\omega } \right)^3} = {\left( {{\omega ^2}} \right)^3} - {\rm{ }}3 \cdot {\left( {{\omega ^2}} \right)^2} \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot {\left( {2\omega } \right)^2} - {\left( {2\omega } \right)^3} = {\omega ^6} - 3 \cdot \left( {{\omega ^4}} \right) \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot \left( {4{\omega ^2}} \right) - 8{\omega ^3} = {\omega ^6} - 6{\omega ^5} + 12{\omega ^4} - 8{\omega ^3}$$

$${\left( {\sqrt {\rm{2}} {\rm{  -  }}\sqrt {\rm{3}} } \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3}{\rm{ -  }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{3}}  + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {\left( {\sqrt {\rm{3}} } \right)^2} - {\left( {\sqrt {\rm{3}} } \right)^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}}  - 3 \cdot 2 \cdot \sqrt {\rm{3}}  + 3 \cdot \sqrt 2  \cdot 3 - {\left( {\sqrt {\rm{3}} } \right)^2} \cdot \sqrt {\rm{3}}  = 2\sqrt {\rm{2}}  - 6\sqrt {\rm{3}}  + 9\sqrt 2  - 3\sqrt {\rm{3}}  = 11\sqrt 2  - 9\sqrt {\rm{3}} $$

 

Γινόμενο αθροίσματος επί διαφορά

$$\left( {\alpha {\rm{  +  }}\beta } \right)\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right){\rm{  =  }}{\alpha ^2} - {\rm{ }}{\beta ^2}$$

$$\left( {{\alpha ^3}{\rm{  +  }}{\beta ^3}} \right)\left( {{\alpha ^3}{\rm{ }} - {\rm{ }}{\beta ^3}} \right){\rm{  =  }}{\left( {{\alpha ^3}} \right)^2} - {\rm{ }}{\left( {{\beta ^3}} \right)^2} = {\alpha ^6}{\rm{ }} - {\rm{ }}{\beta ^6}$$

$$99 \cdot 101 = \left( {100 - 1} \right)\left( {100 + 1} \right) = {100^2} - {1^2} = 10000 - 1 = 9999$$

 

Τα γινόμενα του αθροίσματος ή της  διαφοράς κύβων

$$\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)\left( {{\alpha ^2} - {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} + {\rm{ }}{\beta ^3}$$  

$$\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }}9} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }} + {\rm{ }}{3^2}} \right){\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}{3^3} = {\rm{ }}{x^3} + {\rm{ }}27$$

$$\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)\left( {{\alpha ^2} + {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} - {\rm{ }}{\beta ^3}$$

$$\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}4} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }} + {\rm{ }}{2^2}} \right){\rm{ }} = {\rm{ }}{x^3} - {\rm{ }}{2^3} = {\rm{ }}{x^3}{\rm{ }} - {\rm{ }}8$$


Τετραγωνική ρίζα

Τετρ. ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετρ. ρίζα του α συμβολίζεται με  $$ \sqrt{ \alpha } $$.

τετραγωνική ρίζα

 

 

 

 Ιδιότητες
  • $$\sqrt 0  = 0$$
  • Η εξίσωση β' βαθμού x2 έχει δυο λύσεις x = $$ \sqrt{ \alpha } $$ και x = -$$ \sqrt{ \alpha } $$
  • $$\sqrt {\alpha  \cdot \beta }  = \sqrt \alpha   \cdot \sqrt \beta  $$
  • $$\sqrt {\frac{\alpha }{\beta }}  = \frac{{\sqrt \alpha  }}{{\sqrt \beta  }}$$

Προσοχή!

  • $$\sqrt {\alpha  + \beta }  \ne \sqrt \alpha   + \sqrt \beta  $$
  • $$\sqrt {\alpha  - \beta }  \ne \sqrt \alpha   - \sqrt \beta  $$

Χρήσιμες ιδιότητες για την απλοποίηση παραστάσεων

Ρίζα δύναμης με άρτιο εκθέτη: $$\sqrt {{\alpha ^{2\nu }}}  = \sqrt {{{\left( {{\alpha ^\nu }} \right)}^2}}  = {\alpha ^\nu }$$


Ρίζα δύναμης με περιττό εκθέτη: $$\sqrt {{\alpha ^{2\nu  + 1}}}  = \sqrt {\alpha  \cdot {\alpha ^{2\nu }}}  = \sqrt \alpha   \cdot {\alpha ^\nu }$$


Τριγωνομετρικοί αριθμοί

Ορισμοί

Για τις οξείες γωνίες ενός ορθογωνίου τριγώνου δίνονται οι εξής ορισμοί.

$${\rm E}\Phi {\rm A}\Pi {\rm T}{\rm O}{\rm M}{\rm E}{\rm N}{\rm H} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}$$

$${\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

$$\Sigma \Upsilon {\rm N}{\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

ορθογώνιο τρίγωνο

 

$$\begin{array}{l}\varepsilon \varphi {\rm B} = \frac{{{\rm A}\Gamma }}{{{\rm A}{\rm B}}} = \frac{\beta }{\gamma }\,\,\,\,\,\,\,\,\,\,\,\,\varepsilon \varphi \Gamma  = \frac{{{\rm A}{\rm B}}}{{{\rm A}\Gamma }} = \frac{\gamma }{\beta }\\\eta \mu {\rm B} = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\eta \mu \Gamma  = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\\\sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\end{array}$$

Γνωρίζουμε ότι σε κάθε ορθογώνιο τρίγωνο η υποτείνουσα είναι μεγαλύτερη από καθεμία από τις κάθετες πλευρές. Επομένως ισχύουν οι ανισώσεις:  0 < ημω < 1 και 0 < συνω < 1

 

 
  Σχέσεις τριγωνομετρικών αριθμών

Για κάθε γωνία ισχύει ότι $$\varepsilon \varphi \omega  = \frac{{\eta \mu \omega }}{{\sigma \upsilon \nu \omega }}\,\,\,\,\left\{ {\frac{{\eta \mu \Gamma }}{{\sigma \upsilon \nu \Gamma }} = \frac{{\frac{\gamma }{\alpha }}}{{\frac{\beta }{\alpha }}} = \frac{{\gamma  \cdot \alpha }}{{\beta  \cdot \alpha }} = \frac{\gamma }{\beta } = \varepsilon \varphi \Gamma } \right\}$$

Όπως φαίνεται $$\eta \mu {\rm B} = \sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,$$ και $$\eta \mu \Gamma  = \sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }$$, δηλαδή το ημίτονο μιας γωνίας ισούται με το συνημίτονο της συμπληρωματικής της.

Παρατηρήστε ότι $$\,\varepsilon \varphi \Gamma  = \frac{1}{{\varepsilon \varphi {\rm B}}}$$, δηλαδή οι εφαπτομένες συμπληρωματικών γωνιών είναι αριθμοί αντίστροφοι, έχουν γινόμενο 1 $$\varepsilon \varphi {\rm B} \cdot \varepsilon \varphi \Gamma  = \frac{\gamma }{\beta } \cdot \frac{\beta }{\gamma } = 1\,$$.

Μεταβολές τριγωνομετρικών αριθμών οξειών γωνιών

Όταν μια οξεία γωνία αυξάνεται, τότε: αυξάνεται το ημίτονό της, ελαττώνεται το συνημίτονό της και αυξάνεται η εφαπτομένη της.

Χαρακτηριστικές τιμές τριγωνομετρικών αριθμών οξειών γωνιών

$$\begin{array}{ccccccccccccccc}{}&{{{30}^o}}&{{{45}^o}}&{{{60}^o}}\\{\eta \mu }&{\frac{1}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 3 }}{2}}\\{\sigma \upsilon \nu }&{\frac{{\sqrt 3 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{1}{2}}\\{\varepsilon \varphi }&{\frac{{\sqrt 3 }}{3}}&1&{\sqrt 3 }\end{array}$$