Ταυτότητα λέγεται κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της.
Το δεύτερα μέλη των ταυτοτήτων που ακολουθούν ονομάζονται αναπτύγματα.
$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} + {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$
$${\left( {y{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}{y^2} + {\rm{ }}2 \cdot y \cdot 4{\rm{ }} + {\rm{ }}{4^2} = {\rm{ }}{y^2} + {\rm{ }}8y{\rm{ }} + {\rm{ }}16$$
$${\left( {\sqrt 3 + 1} \right)^2} = {\left( {\sqrt 3 } \right)^2} + {\rm{ }}2 \cdot \sqrt 3 \cdot 1{\rm{ }} + {\rm{ }}{{\rm{1}}^2} = {\rm{ }}3 + {\rm{ }}2\sqrt 3 {\rm{ }} + {\rm{ }}1 = 4 + 2\sqrt 3 {\rm{ }}$$
$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^2} = {\rm{ }}{\alpha ^2} - {\rm{ }}2\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}$$
$${\left( {\omega - \frac{2}{\omega }} \right)^2} = {\omega ^2} - 2 \cdot \omega \cdot \frac{2}{\omega } + {\left( {\frac{2}{\omega }} \right)^2} = {\omega ^2} - 4 + \frac{4}{{{\omega ^2}}}$$
$${\left( {1 - \sqrt 7 } \right)^2} = 1 - 2 \cdot 1 \cdot \sqrt 7 + {\left( {\sqrt 7 } \right)^2} = {\rm{ }}3 - {\rm{ }}2\sqrt 7 {\rm{ }} + {\rm{ 7}} = 10 - 2\sqrt 7 {\rm{ }}$$
$${\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} + {\rm{ }}3{\alpha ^2}\beta + 3\alpha {\beta ^2} + {\beta ^3}$$
$${\left( {{\rm{2x }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {2x} \right)^3} + {\rm{ }}3 \cdot {\left( {2x} \right)^2} \cdot 1 + 3 \cdot \left( {2x} \right) \cdot {1^2} + {1^3} = 8{x^3} + 12{x^2} + 6x + 1$$
$${\left( {\sqrt {\rm{2}} {\rm{ }} + {\rm{ 1}}} \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3} + {\rm{ }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot 1 + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {1^2} + {1^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}} + 3 \cdot 2 \cdot 1 + 3\sqrt 2 + 1 = 2\sqrt {\rm{2}} + 6 + 3\sqrt 2 + 1 = 5\sqrt {\rm{2}} + 7$$
$${\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)^3} = {\rm{ }}{\alpha ^3} - {\rm{ }}3{\alpha ^2}\beta + 3\alpha {\beta ^2} - {\beta ^3}$$
$${\left( {{\omega ^2} - {\rm{ }}2\omega } \right)^3} = {\left( {{\omega ^2}} \right)^3} - {\rm{ }}3 \cdot {\left( {{\omega ^2}} \right)^2} \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot {\left( {2\omega } \right)^2} - {\left( {2\omega } \right)^3} = {\omega ^6} - 3 \cdot \left( {{\omega ^4}} \right) \cdot \left( {2\omega } \right) + 3 \cdot \left( {{\omega ^2}} \right) \cdot \left( {4{\omega ^2}} \right) - 8{\omega ^3} = {\omega ^6} - 6{\omega ^5} + 12{\omega ^4} - 8{\omega ^3}$$
$${\left( {\sqrt {\rm{2}} {\rm{ - }}\sqrt {\rm{3}} } \right)^3} = {\rm{ }}{\left( {\sqrt {\rm{2}} } \right)^3}{\rm{ - }}3 \cdot {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{3}} + 3 \cdot \left( {\sqrt {\rm{2}} } \right) \cdot {\left( {\sqrt {\rm{3}} } \right)^2} - {\left( {\sqrt {\rm{3}} } \right)^3} = {\left( {\sqrt {\rm{2}} } \right)^2} \cdot \sqrt {\rm{2}} - 3 \cdot 2 \cdot \sqrt {\rm{3}} + 3 \cdot \sqrt 2 \cdot 3 - {\left( {\sqrt {\rm{3}} } \right)^2} \cdot \sqrt {\rm{3}} = 2\sqrt {\rm{2}} - 6\sqrt {\rm{3}} + 9\sqrt 2 - 3\sqrt {\rm{3}} = 11\sqrt 2 - 9\sqrt {\rm{3}} $$
$$\left( {\alpha {\rm{ + }}\beta } \right)\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right){\rm{ = }}{\alpha ^2} - {\rm{ }}{\beta ^2}$$
$$\left( {{\alpha ^3}{\rm{ + }}{\beta ^3}} \right)\left( {{\alpha ^3}{\rm{ }} - {\rm{ }}{\beta ^3}} \right){\rm{ = }}{\left( {{\alpha ^3}} \right)^2} - {\rm{ }}{\left( {{\beta ^3}} \right)^2} = {\alpha ^6}{\rm{ }} - {\rm{ }}{\beta ^6}$$
$$99 \cdot 101 = \left( {100 - 1} \right)\left( {100 + 1} \right) = {100^2} - {1^2} = 10000 - 1 = 9999$$
$$\left( {\alpha {\rm{ }} + {\rm{ }}\beta } \right)\left( {{\alpha ^2} - {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} + {\rm{ }}{\beta ^3}$$
$$\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }}9} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}3} \right)\left( {{x^2} - {\rm{ }}3x{\rm{ }} + {\rm{ }} + {\rm{ }}{3^2}} \right){\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}{3^3} = {\rm{ }}{x^3} + {\rm{ }}27$$
$$\left( {\alpha {\rm{ }} - {\rm{ }}\beta } \right)\left( {{\alpha ^2} + {\rm{ }}\alpha \beta {\rm{ }} + {\rm{ }}{\beta ^2}} \right){\rm{ }} = {\rm{ }}{\alpha ^3} - {\rm{ }}{\beta ^3}$$
$$\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}4} \right){\rm{ }} = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}2} \right)\left( {{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }} + {\rm{ }}{2^2}} \right){\rm{ }} = {\rm{ }}{x^3} - {\rm{ }}{2^3} = {\rm{ }}{x^3}{\rm{ }} - {\rm{ }}8$$
» Το λεξικό "Μαθηματική ορολογία"