Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Δ

Διάμεσος παρατηρήσεων

  • Όταν το πλήθος των παρατηρήσεων είναι περιττός αριθμός, παίρνουμε ως διάμεσο τη μεσαία παρατήρηση.
  • Όταν το πλήθος των παρατηρήσεων είναι άρτιο, παίρνουμε ως διάμεσο το μέσο όρο των δύο μεσαίων παρατηρήσεων.

Η διάμεσος «προσεγγίζει» καλύτερα την τιμή που έχουν οι περισσότερες παρατηρήσεις.


Διάμεσος τριγώνου

diamesos.PNGΕίναι το ευθύγραμμο τμήμα που συνδέει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς.


Δύναμη

Δυνάμεις ρητών αριθμών με φυσικό εκθέτη

δύναμη

 

 

 

  •  Για ν = 1, γράφουμε α0 = 1
  • Για ν = 1, γράφουμε α1 = α
  • Η δύναμη αν διαβάζεται και νιοστή δύναμη του α.
  • Η δύναμη α2 λέγεται και τετράγωνο του α ή α στο τετράγωνο.
  • Η δύναμη α3 λέγεται κύβος του α ή α στον κύβο.
Πρόσημο δύναμης
  • Δύναμη με βάση θετικό αριθμό είναι θετικός αριθμός.  Αν α > 0, τότε αν > 0,  (+2)= +23
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη άρτιο είναι θετικός αριθμόςΑν α < 0 και ν άρτιος, τότε αν> 0,  (-2)= +24
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη περιττό είναι αρνητικός αριθμόςΑν α < 0 και ν περιττός, τότε αν< 0,  (-2)= -23

Δυνάμεις ρητών αριθμών με ακέραιο εκθέτη

  • Η δύναμη κάθε αριθμού, διάφορου του μηδενός, με εκθέτη αρνητικό είναι ίση με δύναμη μου έχει βάση τον αντίστροφο αριθμό  με αντίθετο εκθέτη.  

$$\left( \frac{ \alpha }{ \beta } \right)^{-\ ν}$$=$$\left( \frac{ \beta }{ \alpha } \right)^{\ ν}$$ , $$\left( \frac{ 2 }{ 3 } \right)^{-\ 5}$$=$$\left( \frac{ 3 }{ 2 } \right)^{\ 5}$$

 

Ιδιότητες δυνάμεων
  • Για να πολλαπλασιάσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη το άθροισμα των εκθετών. αμ · αν = αμ+ν

 3· 33 = 35,   32 · 3- 3 = 3- 1 = $$ \frac{1}{3} $$

  • Για να διαιρέσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη τη διαφορά του εκθέτη του διαιρέτη από τον εκθέτη του διαιρετέου. αμ : αν = αμ - ν 

3: 33 = 3-1 = $$ \frac{1}{3} $$,   32 : 3- 3 = 32 - (-3) = 35

  • Για να υψώσουμε ένα γινόμενο σε εκθέτη, υψώνουμε κάθε παράγοντα του γινομένου στον εκθέτη αυτό. (α · β)μ =  αμ · βμ

(2 · 3)=  25 · 35,  25 · 3(2 · 3)5 = 65

  • Για να υψώσουμε ένα πηλίκο σε έναν εκθέτη, υψώνουμε καθένα από τους όρους του πηλίκου στον εκθέτη αυτό. $$\left( \frac{ \alpha }{ \beta } \right)^{ \nu }$$ = $$ \frac{ \alpha ^{ \nu }}{ \beta ^{ \nu }} $$

$$ \frac{4}{25} = \frac{2^{2}}{5^{2}} =\left( \frac{2}{5} \right)^{2}$$

  • Για να υψώσουμε μία δύναμη σε έναν εκθέτη, υψώνουμε τη βάση της δύναμης στο γινόμενο των εκθετών. $$\left( \alpha ^{ \mu }\right)^{ \nu }= \alpha ^{ \mu \cdot \nu }$$

$$4^{3}=\left(2^{2}\right)^{3}=2^{6}$$