Το λεξικό "Μαθηματική ορολογία"


Το λεξικό "Μαθηματική ορολογία"

Περιήγηση στο γλωσσάριο χρησιμοποιώντας αυτό το ευρετήριο

Ειδικά | Α | Β | Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ | Τ | Υ | Φ | Χ | Ψ | Ω | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ΟΛΑ

Σελίδα:  1  2  3  4  (Επόμενο)
  ΟΛΑ

Α

Ακέραιοι αριθμοί

Ακέραιοι αρθμοίΑκέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς.

Οι Φυσικοί αριθμοί περιέχονται στους ακεραίους αριθμούς


Αλγεβρική παράσταση

Μια παράσταση που περιέχει πράξεις με αριθμούς και μεταβλητές ονομάζεται αλγεβρική παράσταση.
Για παράδειγμα, η παράσταση 2·x- 5·x+5 είναι μια αλγεβρική παράσταση.

Όταν γράφουμε αλγεβρικές παραστάσεις, συνήθως δε βάζουμε το σύμβολο (·) του πολλαπλασιασμού μεταξύ των αριθμών και των μεταβλητών ή μεταξύ των μεταβλητών. Έτσι η προηγούμενη παράσταση γράφεται 2x- 5x+5.

Oι προσθετέοι  2x & 5x & 5  λέγονται όροι αυτής.

Απλοποιούμε τη μορφή των παραστάσεων κάνοντας Αναγωγή ομοίων όρων . 


Αναγωγή ομοίων όρων

Η διαδικασία αυτή με την οποία γράφουμε σε απλούστερη μορφή αλγεβρικές παραστάσεις, ονομάζεται «αναγωγή ομοίων όρων». Βασίζεται στην Eπιμεριστική ιδιότητα.

7 · α + 8 · α = (7 + 8) · α = 15 · α
x + 4 · x – 2 · x = (1 + 4 – 2) · x = 3 · x
5 · t – 6 · t – 8 · t = (5 – 6 – 8) · t = –9 · t


Ανισότητα

Σύγκριση

Για να συγκρίνουμε λοιπόν δύο πραγματικούς αριθμούς α και β, που δεν έχουν παρασταθεί με σημεία ενός άξονα, βρίσκουμε τη διαφορά τους α - β και εξετάζουμε αν είναι θετική ή αρνητική ή μηδέν.

Αν α - β > 0 τότε α > β
Αν α - β < 0 τότε α< β
Αν α - β = 0 τότε α = β

Διάταξη

Διάταξη-Άξονας

Δύο ή περισσότεροι πραγματικοί αριθμοί που έχουν παρασταθεί με σημεία ενός άξονα είναι διατεταγμένοι. Άρα:

Κάθε θετικός αριθμός είναι μεγαλύτερος από το μηδέν.
Κάθε αρνητικός αριθμός είναι μικρότερος από το μηδέν.
Κάθε θετικός αριθμός είναι μεγαλύτερος από κάθε αρνητικό αριθμό.

Ιδιότητες ανισότητας- διάταξης


Αν α > β τότε α + γ > β + γ και α - γ > β - γ.  Αν και στα δύο μέλη μιας ανισότητας προσθέσουμε ή αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ > 0 τότε α γ > β γ και $$ \frac{ \alpha }{ \gamma } > \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο θετικό αριθμό, τότε προκύπτει ανισότητα με την ίδια φορά.

Αν α > β και γ < 0 τότε α γ < β γ και $$ \frac{ \alpha }{ \gamma } < \frac{ \beta }{ \gamma } $$.  Αν πολλαπλασιάσουμε ή διαιρέσουμε και τα δύο μέλη μιας ανισότητας με τον ίδιο αρνητικό αριθμό, τότε προκύπτει ανισότητα αντίθετης φοράς

Αν α > β και γ > δ τότε α + γ > β + δ. Αν προσθέσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά, τότε προκύπτει ανισότητα με την ίδια φορά..

Αν α, β, γ, δ θετικοί αριθμοί με α > β και γ > δ τότε αγ > βδ.  Αν πολλαπλασιάσουμε κατά μέλη δύο ή περισσότερες ανισότητες που έχουν την ίδια φορά και θετικά μέλη, τότε προκύπτει ανισότητα με την ίδια φορά.

α2 ≥ 0. Το τετράγωνο κάθε πραγματικού αριθμού α είναι μη αρνητικός αριθμός. Αν για τους πραγματικούς αριθμούς α, β ισχύει α2 + β2 = 0, τότε α = 0 και β = 0.

Αν α > β και β > γ τότε α > γ. Μεταβατική ιδιότητα.

Δείτε παράδειγμα ασκήσεων με ανισώσεις ... εδώ.

 


Ανίσωση

Ονομάζουμε ανίσωση την ανισότητα δύο αλγεβρικών παραστάσεων που περιέχουν τουλάχιστον μια μεταβλητή που ονομάζεται άγνωστος.

π.χ. ανίσωση είναι η παράσταση 2x+5x-3≥8(x+2)

  • Η αλγεβρική παράσταση αριστερά ή δεξιά του ίσον λέγεται μέλος της ανίσωσης.
  • Οι όροι που περιέχουν μεταβλητή λέγονται άγνωστοι όροι (2x, 5x, x), ενώ οι άλλοι λέγονται γνωστοί όροι.
  • Λύση ή ρίζα της ανίσωσης είναι η τιμές του αγνώστου που επαληθεύουν την ανιισότητα.
  • Η διαδικασία αναζήτησης της λύσης της ανίσωσης λέγεται επίλυση της ανίσωσης

Δείτε παράδειγμα ασκήσεων με ανισώσεις ... εδώ.


Απόλυτη τιμή

απόλυτη τιμήΗ απόλυτη τιμή ενός ρητού αριθμού α εκφράζει την απόσταση του σημείου μετετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με |α|.

Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι και έχουν την ίδια απόλυτη τιμή.

Ο αντίθετος του x είναι ο -x.

απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός|+6| = 6.

απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. |-6| = -(6-)=6

H απόλυτη τιμή του μηδενός είναι το μηδέν.


Αριθμητική παράσταση

ονομάζεται μια παράσταση που περιέχει πράξεις με αριθμούς..
Για παράδειγμα, η παράσταση  2·3-4·(-3)+5 είναι μια αριθμητική παράσταση. 


Αρνητικοί αριθμοί

Οι αρνητικοί αριθμοί με πρόσημο - , είναι οι συμμετρικοί των θετικών αριθμών, με πρόσημο + (το οποίο παραλείπεται όταν δε δημιουργείται ασάφεια. 

  • Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός
  • Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. +5 , +1,25 , +$$ \frac{5}{7} $$ ή -5 , -1,25 , -$$ \frac{5}{7} $$
  • Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. -5 , +7,2 
Παράσταση των ρητών αριθμών με σημεία μιας ευθείας

 Αν θεωρήσουμε αριστερά της αρχής Ο του ημιάξονα Οx των αριθμών, τον αντικείμενο αυτού ημιάξονα Οx', θα έχουμε τη δυνατότητα, με αυτόν τον τρόπο, να παραστήσουμε όλους τους ρητούς αριθμούς.

άξονας αριθμών

Το σημείο Α έχει τετμημένη 4 και το σημείο Β έχει τετμημένη -2.

Απόλυτη τιμή

Πράξεις με αρνητικούς αριθμούς
Πρόσθεση
  • Αν οι αριθμοί είναι ομόσημοι, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμα βάζουμε το κοινό τους πρόσημο: +2+3=+(2+3)=+5 , -2-3=-(2+3)=-5
  • Αν οι αριθμοί είναι ετερόσημοι, αφαιρούμε τη μικρότερη απόλυτη τιμή από τη μεγαλύτερη και στη διαφορά βάζουμε το πρόσημο της μεγαλύτερη απόλυτης τιμής: -2+3=+(3-2) =+1 , +2-3=-(3-2)=-1
Αφαίρεση
  • Στον μειωτέο α, πρσθέτουμα τον αντίθετο του αφαιρετέου. α-β=α+(-β):  2-(-3)=2+(+3)=+5 , 2-(+3)=2+(-3)=-1
Πολλαπλασιασμός 
  • Αν οι αριθμοί είναι ομόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε θετικό πρόσημο: (+2)·(+3)=+6 , (-2)·(-3)=+6
  • Αν οι αριθμοί είναι ετερόσημοι, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε αρνητικό πρόσημο: (+2)·(-3)=-6 , (-2)·(+3)=-6
Διαίρεση
  • Πολλαπλασιάζουμε τον διαιρετέο α με τον αντίστροφο $$ \frac{1}{ \beta } $$ του διαιρέτη β. α:β= $$ \alpha \cdot \frac{1}{ \beta } $$, με β≠0. 
  • Για τα πρόσημα ισχύει ο κανόνας του πολλαπλασιασμού.
  • (+3): (-$$ \frac{3}{5} $$) = (+3)·(-$$ \frac{5}{3} $$) =-5

Ά

Άρρητοι αριθμοί

άρρητοι αριθμοίΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

  • Οι άρρητοι αριθμοί δεν μπορούν να γραφούν στη μοεφή $$ \frac{ \mu }{ \nu } $$ με ν ≠ 0.
  • Η δεκαδική φραφή του άρρητου αριθμού έχει άπειρα ψηφία, χωρίς να εμφανίζεται επαναλαμβανόμενο μοτίβο.
  • η τετραγωνική ρίζα κάθε ακέραιου που δεν είναι τετράγωνο, είναι άρρητος.
  • Υπάρχουν και άλλοι άρρητοι που δεν είναι ρίζες ρητών αριθμών, όπως ο γνωστός από τη μέτρηση του κύκλου αριθμός π.

Δ

Διάμεσος παρατηρήσεων

  • Όταν το πλήθος των παρατηρήσεων είναι περιττός αριθμός, παίρνουμε ως διάμεσο τη μεσαία παρατήρηση.
  • Όταν το πλήθος των παρατηρήσεων είναι άρτιο, παίρνουμε ως διάμεσο το μέσο όρο των δύο μεσαίων παρατηρήσεων.

Η διάμεσος «προσεγγίζει» καλύτερα την τιμή που έχουν οι περισσότερες παρατηρήσεις.


Διάμεσος τριγώνου

diamesos.PNGΕίναι το ευθύγραμμο τμήμα που συνδέει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς.


Δύναμη

Δυνάμεις ρητών αριθμών με φυσικό εκθέτη

δύναμη

 

 

 

  •  Για ν = 1, γράφουμε α0 = 1
  • Για ν = 1, γράφουμε α1 = α
  • Η δύναμη αν διαβάζεται και νιοστή δύναμη του α.
  • Η δύναμη α2 λέγεται και τετράγωνο του α ή α στο τετράγωνο.
  • Η δύναμη α3 λέγεται κύβος του α ή α στον κύβο.
Πρόσημο δύναμης
  • Δύναμη με βάση θετικό αριθμό είναι θετικός αριθμός.  Αν α > 0, τότε αν > 0,  (+2)= +23
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη άρτιο είναι θετικός αριθμόςΑν α < 0 και ν άρτιος, τότε αν> 0,  (-2)= +24
  • Δύναμη με βάση αρνητικό αριθμό και εκθέτη περιττό είναι αρνητικός αριθμόςΑν α < 0 και ν περιττός, τότε αν< 0,  (-2)= -23

Δυνάμεις ρητών αριθμών με ακέραιο εκθέτη

  • Η δύναμη κάθε αριθμού, διάφορου του μηδενός, με εκθέτη αρνητικό είναι ίση με δύναμη μου έχει βάση τον αντίστροφο αριθμό  με αντίθετο εκθέτη.  

$$\left( \frac{ \alpha }{ \beta } \right)^{-\ ν}$$=$$\left( \frac{ \beta }{ \alpha } \right)^{\ ν}$$ , $$\left( \frac{ 2 }{ 3 } \right)^{-\ 5}$$=$$\left( \frac{ 3 }{ 2 } \right)^{\ 5}$$

 

Ιδιότητες δυνάμεων
  • Για να πολλαπλασιάσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη το άθροισμα των εκθετών. αμ · αν = αμ+ν

 3· 33 = 35,   32 · 3- 3 = 3- 1 = $$ \frac{1}{3} $$

  • Για να διαιρέσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη τη διαφορά του εκθέτη του διαιρέτη από τον εκθέτη του διαιρετέου. αμ : αν = αμ - ν 

3: 33 = 3-1 = $$ \frac{1}{3} $$,   32 : 3- 3 = 32 - (-3) = 35

  • Για να υψώσουμε ένα γινόμενο σε εκθέτη, υψώνουμε κάθε παράγοντα του γινομένου στον εκθέτη αυτό. (α · β)μ =  αμ · βμ

(2 · 3)=  25 · 35,  25 · 3(2 · 3)5 = 65

  • Για να υψώσουμε ένα πηλίκο σε έναν εκθέτη, υψώνουμε καθένα από τους όρους του πηλίκου στον εκθέτη αυτό. $$\left( \frac{ \alpha }{ \beta } \right)^{ \nu }$$ = $$ \frac{ \alpha ^{ \nu }}{ \beta ^{ \nu }} $$

$$ \frac{4}{25} = \frac{2^{2}}{5^{2}} =\left( \frac{2}{5} \right)^{2}$$

  • Για να υψώσουμε μία δύναμη σε έναν εκθέτη, υψώνουμε τη βάση της δύναμης στο γινόμενο των εκθετών. $$\left( \alpha ^{ \mu }\right)^{ \nu }= \alpha ^{ \mu \cdot \nu }$$

$$4^{3}=\left(2^{2}\right)^{3}=2^{6}$$


Ε

Ε.Κ.Π.

Ε.Κ.Π. φυσικών αριθμών

Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) δύο ή περισσοτέρων φυσικών αριθμών που έχουν αναλυθεί σε γινόμενο πρώτων παραγόντων ονομάζεται, το γινόμενο των κοινών και μη κοινών παραγόντων τους με εκθέτη καθενός το μεγαλύτερο από τους εκθέτες του.

Παράδειγμα

Δίνονται οι αριθμοί 720, 540 και 360. Αναλύουμε τους αριθμούς σε γινόμενο πρώτων παραγόντων:

 

720 = 2·360 = 2·2·180 = 2·2·2·90 = 2·2·2·2·45 = 24·3·15 = 24·3·3·5  24·32·51

360 = 2·180 = 2·2·90 = 2·2·2·45 = 23·3·15 = 23·3·3·5  23·32·51

540 = 2·270 = 2·2·135 = 22·3·45 = 22·3·3·15 = 22·3·3·3·5  22·33·51

E.Κ.Π.(  720, 540, 630) = E.Κ.Π.( 24·32·51,  22·33·51, 23·32·51) = 24·33·51=2160

Ένας πιο απλός τρόπος:
  • Πολλαπλάσια 720 : 720 , 1440 , 2160 , 2880 ...
  • Πολλαπλάσια 360 : 360 , 720 , 1080 , 1440 , 1800 , 2160 , 2520 ...
  • Πολλαπλάσια 540 : 540 , 1080 , 1620 , 2160 , 2520 ..

 

 


Εμβαδόν

emvada.jpg


Εξίσωση

Ονομάζουμε εξίσωση την ισότητα δύο αλγεβρικών παραστάσεων που περιέχουν τουλάχιστον μια μεταβλητή που ονομάζεται άγνωστος.
π.χ. εξίσωση είναι η παράσταση 2x2+5x-3=8(x3+2)

  • Η αλγεβρική παράσταση αριστερά ή δεξιά του ίσον λέγεται μέλος της εξίσωσης.
  • Οι όροι που περιέχουν μεταβλητή λέγονται άγνωστοι όροι (2x2, 5x, x3), ενώ οι άλλοι λέγονται γνωστοί όροι.
  • Λύση ή ρίζα της εξίσωσης είναι η τιμή του αγνώστου που επαληθεύει την ισότητα.
  • Η διαδικασία αναζήτησης της λύσης της εξίσωσης θα λέγεται επίλυση της εξίσωσης.
Εξίσωση πρώτου βαθμού

Έχει τη μορφή beta x plus gamma space equals 0.

 

Αν Error converting from MathML to accessible text., τότε; η εξίσωση beta x plus gamma space equals 0 έχει μοναδική λύση την Error converting from MathML to accessible text..
Αν Error converting from MathML to accessible text., τότε η εξίσωση beta x plus gamma space equals 0 γράφεται Error converting from MathML to accessible text. και

  • αν Error converting from MathML to accessible text. δεν έχει λύση (αδύνατη) 0x=γ, ενώ 
  • αν Error converting from MathML to accessible text., κάθε αριθμός είναι λύση της (ταυτότητα ή αόριστη). 0x=0 

 Δες σε παράδειγμα τον αλγόριθμο επίλυσης εξίσωσης πρώτου βαθμού ... εδώ.

Δες σε παράδειγμα τη διαδικασία επίλυσης προβλήματος με τη χρήση εξίσωσης πρώτου βαθμού ... εδώ.

 

Ευθεία

Οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων είναι ευθείες γραμμές:

Η γραφική παράσταση είναι ευθεία γραμμήbold italic x bold equals bold italic lambda  Ευθεία παράλληλη στον άξονα bold italic y που περνά από το σημείο bold left parenthesis bold italic lambda bold comma bold 0 bold right parenthesis

bold italic y bold equals bold italic beta  Ευθεία παράλληλη στον άξονα bold italic x που περνά από το σημείο bold left parenthesis bold 0 bold comma bold italic beta bold right parenthesis

bold italic y bold equals bold italic alpha bold italic x  Ευθεία με κλίση bold italic alpha  που περνά από το σημείο bold left parenthesis bold 0 bold comma bold 0 bold right parenthesis, την αρχή των αξόνων. Είναι η γραφική παράσταση των ανάλογων μεγεθών.

bold italic y bold equals bold italic alpha bold italic x bold plus bold italic beta  Ευθεία με κλίση bold italic alpha  που τον άξονα bold italic x στο σημείο bold italic capital lambda open parentheses bold minus bold beta over bold alpha bold comma bold 0 close parentheses και τον άξονα bold italic y στο σημείο bold italic capital kappa open parentheses bold 0 bold comma bold italic beta close parentheses

 

Δείτε περισσότερα... εδώ.


Ι

Ιδιότητα

Ιδιότητες των πράξεων
Ουδέτερο στοιχείο
  • Στην πρόσθεση είναι το μηδέν: $$ \alpha +0=0+ \alpha = \alpha $$
  • Στον πολλαπλασιασμό είναι το ένα: $$ \alpha \cdot 1=1 \cdot \alpha = \alpha $$
Καταστροφικό στοιχείο
  • Στον πολλαπλασιασμό είναι το μηδέν: $$ \alpha \cdot 0=0 \cdot \alpha =0$$
Απαγορεύεται
  • Η διαίρεση με το μηδέν: Η διαίρεση $$ \frac{ \alpha }{ \beta } $$ επιτρέπεται μόνο αν $$ \beta \neq 0$$
Αντίθετοι αριθμοί
  • α+β=β+α=0 ή α= –β
Αντίστροφοι αριθμοί
  • α·β=β·α=1 ή $$ \alpha = \frac{1}{ \beta } $$ ή $$ \beta = \frac{1}{ \alpha } $$
Αντιμεταθετική ιδιότητα
  • Στην πρόσθεση: $$ \alpha + \beta = \beta + \alpha $$
  • Στον πολλαπλασιασμό: $$ \alpha \cdot \beta = \beta \cdot \alpha $$
Προσεταιριστική ιδιότητα
  • Στην πρόσθεση: $$ \alpha +\left( \beta + \gamma \right)=\left( \alpha + \beta \right)+ \gamma $$
  • Στον πολλαπλασιασμό: $$ \alpha \cdot \left( \beta \cdot \gamma \right)=\left( \alpha \cdot \beta \right) \cdot \gamma $$
Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς
  • την πρόσθεση: (α + β) · γ = α · γ + β · γ.  Mπορεί να γραφεί και στη μορφή: α · γ + β · γ= (α + β) · γ  
  • την αφαίρεση: (α - β) · γ = α · γ - β · γ.  Mπορεί να γραφεί και στη μορφή: α · γ - β · γ= (α - β) · γ   
  • Η δεύτερες μορφές βοηθούν στην Αναγωγή ομοίων όρων.

 


Ισότητα

Ιδιότητες ισότητας

Χρήσιμες ιδιότητες πράξεων
Αν α=β τότε α+γ=β+γ. Αν και στα δύο μέλη μιας ισότητας προσθέσουμε τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε α-γ=β-γ.  Αν και από τα δύο μέλη μιας ισότητας αφαιρέσουμε τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε α·γ=β·γ. Αν και τα δύο μέλη μιας ισότητας πολλαπλασιαστούν με τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.
Αν α=β τότε $$ \frac{ \alpha }{ \gamma } = \frac{ \beta }{ \gamma } $$  με γ≠0. Αν και τα δύο μέλη μιας ισότητας διαιρεθούν με τον ίδιο αριθμό, τότε προκύπτει και πάλι μια ισότητα.


Κ

Κύλινδρος

Ένας κύλινδρος αποτελείται από δύο ίσους και παράλληλους κυκλικούς δίσκους, που είναι οι βάσεις του, και την παράπλευρη επιφάνεια, που, αν την ξετυλίξουμε, θα δούμε ότι έχει σχήμα ορθογωνίου.

Η απόσταση των δύο βάσεων λέγεται ύψος του κυλίνδρου.

 

Περισσότερα...


Μ

Μ.Κ.Δ.

Μ.Κ.Δ. φυσικών αριθμών

Μέγιστος Κοινός Διαιρέτης ( Μ.Κ.Δ. ) δύο ή περισσοτέρων φυσικών αριθμών που έχουν αναλυθεί σε γινόμενο πρώτων παραγόντων ονομάζεται, το γινόμενο των κοινών παραγόντων τους με εκθέτη καθενός το μικρότερο από τους εκθέτες του. 

Παράδειγμα

Για μα βρούμε τον Μέγιστο Κοινό Διαιρέτη των αριθμών αναλύουμε τους αριθμούς σε γινόμενο πρώτων παραγόντων:

 

720 = 2·360 = 2·2·180 = 2·2·2·90 = 2·2·2·2·45 = 24·3·15 = 24·3·3·5  24·32·51

360 = 2·180 = 2·2·90 = 2·2·2·45 = 23·3·15 = 23·3·3·5  23·32·51

540 = 2·270 = 2·2·135 = 22·3·45 = 22·3·3·15 = 22·3·3·3·5  22·33·51

 

Μ.Κ.Δ.(  720, 540, 630) = Μ.Κ.Δ.( 24·32·51,  22·33·51, 23·32·51) = 22·32·5= 180

 Ένας πιο απλός τρόπος:
720 540 360 360
0 180 0 180
0 0 0  

 

 


Μέση τιμή

Μέσος όρος, Μέση τιμή

Για να βρούμε τη μέση τιμή ενός συνόλου παρατηρήσεων, προσθέτουμε όλες τις παρατηρήσεις και διαιρούμε με το πλήθος των παρατηρήσεων αυτών.

Η μέση τιμή δεν μπορεί να είναι μικρότερη από τη μικρότερη των τιμών ή μεγαλύτερη από τη μεγαλύτερη, επηρεάζεται δε σημαντικά από τις μεγάλες τιμές.


Μεταβλητή

λέγεται ένα γράμμα π.χ x,y,z,ω,…( ελληνικό ή λατινικό) που παριστάνει έναν οποιοδήποτε αριθμό.

Χρησιμοποιώντας μεταβλητές "μεταφράζουμε" μια φράση σε Αλγεβρική παράσταση.

Παράδειγμα: Το άθροισμα δύο αριθμών πολλαπλασιασμένο επί 9. Αν συμβολίσουμε τους αριθμούς x και y τότε το άθροισμά τους είναι x+y και η ζητούμενη αλγεβρική παράσταση 9(x+y).

 


Π

Πραγματικοί αριθμοί

Οι Φυσικοί αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ακέραιοι αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ρητοί αριθμοί περιέχονται στους πραγματικούς αριθμούς
Οι Άρρητοι αριθμοί περιέχονται στους πραγματικούς αριθμούς

Άξονας πραγματικών αριθμών

πραγματικοί αριθμοίΟι φυσικοί αριθμοί: 0, 1, 2, 3, ... παριστάνονται στη διπλανή ευθεία με σημεία.
Στην αρχή Ο έχουμε τοποθετήσει το μηδέν (0).

Οι ακέραιοι αριθμοί: ... -3, -2, -1, 0, 1, 2, 3 ... παριστάνονται πάλι με σημεία.
Τοποθετούμε στα δεξιά της αρχής Ο τους θετικούς ακέραιους αριθμούς και στα αριστερά τους αρνητικούς.

Το σύνολο των ρητών αριθμών, δηλαδή των αριθμών που μπορούν να γραφούν στη μορφή, όπου μ ακέραιος και ν φυσικός αριθμός. Οι ρητοί αριθμοί έχουν γνωστή δεκαδική μορφή και γεμίζουν την ευθεία, αλλά όχι πλήρως.

Οι πραγματικοί αριθμοί αποτελούνται όχι μόνο από τους ρητούς αλλά και όλους τους άρρητους.
Οι πραγματικοί αριθμοί καλύπτουν πλήρως την ευθεία, δηλαδή κάθε σημείο της ευθείας αντιστοιχεί σε έναν πραγματικό αριθμό και αντίστροφα κάθε πραγματικός αριθμός αντιστοιχεί σε μοναδικό σημείο της ευθείας.
Για το λόγο αυτό, την ευθεία αυτή την ονομάζουμε ευθεία ή άξονα των πραγματικών αριθμών.

 


Πρίσμα

Κάθε πρίσμα έχει:

δύο έδρες παράλληλες, που είναι ίσα πολύγωνα και τις άλλες έδρες του που είναι ορθογώνια παραλληλόγραμμα και ονομάζονται παράπλευρες έδρες.

Οι δύο παράλληλες έδρες του λέγονται βάσεις του πρίσματος.

Οι παράπλευρες έδρες σχηματίζουν την παράπλευρη επιφάνεια του πρίσματος. Οι πλευρές των εδρών του πρίσματος ονομάζονται ακμές.

 

Περισσότερα...


Πυθαγόρειο θεώρημα

πυθαγόρειο θεώρημαΤο τετράγωνο της υποτείνουσας ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών του.

ΒΓ2 = ΑΒ2 + ΑΓ2 
 
α2 = β2 + γ2

 

Αντίστροφο Πυθαγόρειο θεώρημα

Αν ισχύει η σχέση  ΚΛ2 = ΜΛ2 + ΜΚ2 μεταξύ των πλευρών ενός τριγώνου ΚΛΜ , τότε το τρίγωνο είναι ορθογώνιο με ορθή γωνία τη γωνία Μ. 

Περισσότερα


Πυραμίδα

Η πυραμίδα είναι γεωμετρικό στερεό. Είναι πολύεδρο που σχηματίζεται με ένα ν-γωνο ως βάση και ν τριγωνικές πλευρές που συνδέονται σε μια κορυφή.

Περισσότερα...


Ρ

Ρητοί αριθμοί

ρητοί αριθμοίΟι ρητοί αριθμοί μπορούν να γραφούν σε μορφή κλάσματος με ακέραιους όρους που είναι πρώτοι αριθμοί και παρονομαστή διάφορο του μηδενός.

Μορφή ρητού αριθμού: $$ \frac{ \mu }{ \nu } $$ με ν ≠ 0 κια Μ.Κ.Δ. (μ,ν) =1

Κάθε ρητός αριθμός μπορεί να γραφεί και σε δεκαδική μορφή. Αυτό γίνεται κάνοντας τη διαίρεση μ / ν.

Η διαίρεση αυτή μπορεί

  • να ολοκληρωθεί π.χ. $$ \frac{1}{8} $$  = 0,125
  • ή όχι π.χ. $$ \frac{1}{7} $$ = 0,142857142857.... Για τη δεύτερη περίπτωση λέμε ότι η δεκαδική γραφή ενός ρητού αριθμού είναι πάντα περιοδική.

Οι Φυσικοί αριθμοί περιέχονται στους ρητούς αριθμούς
Οι Ακέραιοι αριθμοί περιέχονται στους ρητούς αριθμούς

 


Σ

Σφαίρα

Σφαίρα λέγεται το στερεό σώμα που παράγεται, αν περιστρέψουμε ένα κυκλικό δίσκο (Ο, ρ) γύρω από μία διάμετρό του.

 

Περισσότερα...


Τ

Τετραγωνική ρίζα

Τετρ. ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετρ. ρίζα του α συμβολίζεται με  $$ \sqrt{ \alpha } $$.

τετραγωνική ρίζα

 

 

 

 Ιδιότητες
  • $$\sqrt 0  = 0$$
  • Η εξίσωση β' βαθμού x2 έχει δυο λύσεις x = $$ \sqrt{ \alpha } $$ και x = -$$ \sqrt{ \alpha } $$
  • $$\sqrt {\alpha  \cdot \beta }  = \sqrt \alpha   \cdot \sqrt \beta  $$
  • $$\sqrt {\frac{\alpha }{\beta }}  = \frac{{\sqrt \alpha  }}{{\sqrt \beta  }}$$

Προσοχή!

  • $$\sqrt {\alpha  + \beta }  \ne \sqrt \alpha   + \sqrt \beta  $$
  • $$\sqrt {\alpha  - \beta }  \ne \sqrt \alpha   - \sqrt \beta  $$

Χρήσιμες ιδιότητες για την απλοποίηση παραστάσεων

Ρίζα δύναμης με άρτιο εκθέτη: $$\sqrt {{\alpha ^{2\nu }}}  = \sqrt {{{\left( {{\alpha ^\nu }} \right)}^2}}  = {\alpha ^\nu }$$


Ρίζα δύναμης με περιττό εκθέτη: $$\sqrt {{\alpha ^{2\nu  + 1}}}  = \sqrt {\alpha  \cdot {\alpha ^{2\nu }}}  = \sqrt \alpha   \cdot {\alpha ^\nu }$$


Τριγωνομετρικοί αριθμοί

Ορισμοί

Για τις οξείες γωνίες ενός ορθογωνίου τριγώνου δίνονται οι εξής ορισμοί.

$${\rm E}\Phi {\rm A}\Pi {\rm T}{\rm O}{\rm M}{\rm E}{\rm N}{\rm H} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}$$

$${\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{{\rm A}\Pi {\rm E}{\rm N}{\rm A}{\rm N}{\rm T}{\rm I}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

$$\Sigma \Upsilon {\rm N}{\rm H}{\rm M}{\rm I}{\rm T}{\rm O}{\rm N}{\rm O} = \frac{{\Pi {\rm P}{\rm O}\Sigma {\rm K}{\rm E}{\rm I}{\rm M}{\rm E}{\rm N}{\rm H}\,\,{\rm K}{\rm A}\Theta {\rm E}{\rm T}{\rm H}}}{{\Upsilon \Pi {\rm O}{\rm T}{\rm E}{\rm I}{\rm N}{\rm O}\Upsilon \Sigma {\rm A}}}$$

ορθογώνιο τρίγωνο

 

$$\begin{array}{l}\varepsilon \varphi {\rm B} = \frac{{{\rm A}\Gamma }}{{{\rm A}{\rm B}}} = \frac{\beta }{\gamma }\,\,\,\,\,\,\,\,\,\,\,\,\varepsilon \varphi \Gamma  = \frac{{{\rm A}{\rm B}}}{{{\rm A}\Gamma }} = \frac{\gamma }{\beta }\\\eta \mu {\rm B} = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\eta \mu \Gamma  = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\\\sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }\,\,\,\,\,\,\,\,\,\,\,\,\sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\end{array}$$

Γνωρίζουμε ότι σε κάθε ορθογώνιο τρίγωνο η υποτείνουσα είναι μεγαλύτερη από καθεμία από τις κάθετες πλευρές. Επομένως ισχύουν οι ανισώσεις:  0 < ημω < 1 και 0 < συνω < 1

 

 
  Σχέσεις τριγωνομετρικών αριθμών

Για κάθε γωνία ισχύει ότι $$\varepsilon \varphi \omega  = \frac{{\eta \mu \omega }}{{\sigma \upsilon \nu \omega }}\,\,\,\,\left\{ {\frac{{\eta \mu \Gamma }}{{\sigma \upsilon \nu \Gamma }} = \frac{{\frac{\gamma }{\alpha }}}{{\frac{\beta }{\alpha }}} = \frac{{\gamma  \cdot \alpha }}{{\beta  \cdot \alpha }} = \frac{\gamma }{\beta } = \varepsilon \varphi \Gamma } \right\}$$

Όπως φαίνεται $$\eta \mu {\rm B} = \sigma \upsilon \nu \Gamma  = \frac{{{\rm A}\Gamma }}{{\Gamma {\rm B}}} = \frac{\beta }{\alpha }\,$$ και $$\eta \mu \Gamma  = \sigma \upsilon \nu {\rm B} = \frac{{{\rm A}{\rm B}}}{{\Gamma {\rm B}}} = \frac{\gamma }{\alpha }$$, δηλαδή το ημίτονο μιας γωνίας ισούται με το συνημίτονο της συμπληρωματικής της.

Παρατηρήστε ότι $$\,\varepsilon \varphi \Gamma  = \frac{1}{{\varepsilon \varphi {\rm B}}}$$, δηλαδή οι εφαπτομένες συμπληρωματικών γωνιών είναι αριθμοί αντίστροφοι, έχουν γινόμενο 1 $$\varepsilon \varphi {\rm B} \cdot \varepsilon \varphi \Gamma  = \frac{\gamma }{\beta } \cdot \frac{\beta }{\gamma } = 1\,$$.

Μεταβολές τριγωνομετρικών αριθμών οξειών γωνιών

Όταν μια οξεία γωνία αυξάνεται, τότε: αυξάνεται το ημίτονό της, ελαττώνεται το συνημίτονό της και αυξάνεται η εφαπτομένη της.

Χαρακτηριστικές τιμές τριγωνομετρικών αριθμών οξειών γωνιών

$$\begin{array}{ccccccccccccccc}{}&{{{30}^o}}&{{{45}^o}}&{{{60}^o}}\\{\eta \mu }&{\frac{1}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 3 }}{2}}\\{\sigma \upsilon \nu }&{\frac{{\sqrt 3 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{\frac{1}{2}}\\{\varepsilon \varphi }&{\frac{{\sqrt 3 }}{3}}&1&{\sqrt 3 }\end{array}$$


Υ

Υπερβολή

υπερβολήH γραφική παράσταση της συνάρτησης  $$y= \frac{ \alpha }{x} $$ όπου $$ \alpha \neq 0$$, λέγεται υπερβολή και αποτελείται από δύο κλάδους που βρίσκονται:

  • Στο 1ο και στο 3ο τεταρτημόριο των αξόνων, όταν $$ \alpha >0$$.
  • Στο 2ο και στο 4ο τεταρτημόριο των αξόνων, όταν $$ \alpha <0$$

Και στις δύο περιπτώσεις η γραφική παράσταση μιας υπερβολής έχει:

  • Κέντρο συμμετρίας την αρχή Ο των αξόνων.
  • Άξονες συμμετρίας τις διχοτόμους των γωνιών των αξόνων, δηλαδή τις ευθείες με εξισώσεις $$y=x$$ και $$y=-x$$.

Όταν οι μεταβλητές x , y εκφράζουν ποσά / μεγέθη, τότε τα ποσά / μεγέθη αυτά είναι αντιστρόφως ανάλογα, το γινόμενό τους είναι η σταθερά α.

Δεἰτε ένα παράδειγμα αντιστρόφως ποσών και τη μελέτη με τη χρήση συναρτήσεων και γραφικών... εδώ.


Φ

Φυσικοί αριθμοί

Οι αριθμοί 0, 1, 2, 3, 4, 5, 6......... 98, 99, 100........ 1999, 2000, 2001, ... ονομάζονται φυσικοί αριθμοί.

φυσικοί αριθμοί

Κάθε φυσικός αριθμός έχει έναν επόμενο και ένα προηγούμενο φυσικό αριθμό, εκτός από το 0 που έχει μόνο επόμενο, το 1.

Περισσότερα...



Σελίδα:  1  2  3  4  (Επόμενο)
  ΟΛΑ